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A B S T R A C T

Urbanization alters the supply of ecosystem services that are vital for human well-being. The loss of ecosystem
services is particularly challenging in rapid urbanization areas where economic development needs to consume
substantial natural resources. The quantitative and spatial optimization of land use provides an effective tool for
rationally allocating land use structure and pattern to ensure the provision of expected ecosystem services. In
this paper, we combine the Multi-Objective Programming and the Dyna-CLUE model to project land use changes
in 2030 for Wuhan city under three scenarios, i.e., Business As Usual (BAU), Rapid Economic Development
(RED), and Ecological Land Protection (ELP). The coupled model that integrates “top-down” and “bottom-up”
processes is capable of obtaining the optimized land use patterns under different scenarios and examining the
potential impacts of land use changes on ecosystem services in a spatially explicit way. We find that built-up land
will continue its remarkable growth during 2015-2030 under the BAU scenario (grows by 96%) at the expense of
ecological lands (decreases by 18%). Meanwhile, the predicted losses of ecological lands are 11% and 6% under
the RED and ELP scenarios, respectively. Projected land use changes result in varying magnitudes of declines in
ecosystem service values for BAU (11%), RED (6%) and ELP (2%) scenarios from 2015 to 2030. The ELP sce-
nario, which incorporates ecological protection policies and spatial restrictions, plays a positive role in altering
land use trends and mitigating ecosystem degradation. Finally, we establish an ecosystem service value change
matrix to explain how interactions between land use types give rise to trade-offs among multiple ecosystem
services. We find that conversions between ecological land use types can trigger trade-offs among ecosystem
services, but the conversion from ecological lands towards urban land leads to a net loss of all individual eco-
system services. By linking land and ecological systems, the coupled modeling framework in this study can be
useful for obtaining optimal ecosystem-based land use allocation strategies and provide scientific support for
sustainable land use management.

1. Introduction

Humans consume a wide range of goods and services provided by
ecosystems for survival and welfare (Costanza et al., 1997; Daily et al.,
1997). Meanwhile, humans also modify ecosystems over time, in-
tending to enhance the provision of certain types of ecosystem services
(ES) to satisfy immediate human needs, such as food, fuel, and shelter
(Foley et al., 2005), but often result in losses of other types of ES un-
intentionally (Defries et al., 2004). In the past few decades, driven by
the growing needs arising from population growth, rapid urbanization
and economic development, humans have changed ecosystems more
drastically and extensively than ever before, e.g., over 60% of global
ecosystems have been degraded (MEA, 2005), leading to substantial

and largely irreversible loss of ES. Among all human activities, land
use/land cover (LULC) change is most relevant to variations in the
provision of multiple ES (Lawler et al., 2014), as certain ES are closely
tied to specific types of LULC (Costanza et al., 1997; Rodríguez et al.,
2006), e.g., timber and climate regulation are mostly provided by for-
ests. Therefore, understanding the linkage between LULC and ES is of
key interest to both researchers and policy-makers worldwide.

Studies have made advances in modeling LULC changes (e.g., Azadi
et al., 2017), evaluating ES values (e.g., Costanza et al., 2014), and
examining responses of ES to LULC dynamics (e.g., Newbold et al.,
2015). These studies highlight the profound influences of LULC changes
on the provision of ES. For example, the conversion from ecological
lands towards urban land can disrupt surface water balance, increase
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greenhouse gas emissions, and influence regional climate (Foley et al.,
2005). The impacts of LULC changes on ES vary widely across different
biophysical or socioeconomic settings (Defries et al., 2004), and across
different spatial or temporal scales (Clough et al., 2016). Recent re-
search demonstrates that multiple services provided by ecosystems are
not independent of each other (Rodríguez et al., 2006). Hence, LULC
changes aiming to maximize one particular type of ES may lead to
losses of other types of ES, suggesting the existence of trade-offs in the
provision of ES (Haase et al., 2012; Rodríguez et al., 2006). Though
invisible, trade-offs among multiple ES are taking place all the time,
which are often poorly taken into account and thus may cause unin-
tended environmental consequences. Therefore, empirical knowledge
of how interactions between LULC types bring about trade-offs among
multiple ES is needed for sustainable management of ecosystems.

The relationship between ES and LULC highlights the role of ES in
guiding land use planning and decision-making to develop sound
management strategies (DeFries et al., 2004). Specifically, ES can be
integrated into land use planning in two ways, i.e., serving as an ob-
jective of land use optimization models to propose ecologically-friendly
land use schemes, or being used for evaluating, comparing, and se-
lecting land use schemes under multiple planning scenarios. For ex-
ample, Chuai et al. (2013) developed a land use optimization model
with the goal of increasing terrestrial ecosystem carbon storage. The
model obtained a land use scheme that can bring about a 2% relative
increase in carbon storage from 2005 to 2020. Birch et al. (2010) de-
signed three ecosystem restoration scenarios with different discount
rates and performed a cost–benefit analysis to identify the best scheme
that produces the highest increase in ES with the lowest cost. In this
study, ES are used in both ways to inform land use planning, including
the design of an “Ecological Land Protection” scenario, and the eva-
luation of ecosystem responses to land use changes.

Land use optimization models involve complicated processes with
competing objectives (Liu et al., 2015a). Existing approaches that si-
mulate these processes can be divided into two categories: bottom-up
and top-down. The Multi-Objective Programming (MOP), a top-down
approach, is useful for solving problems with conflicting objectives in
complex land systems, particularly when incorporating macroeconomic
policies (Sadeghi et al., 2009). However, the MOP cannot handle spatial
optimization. The Cellular Automata, which is a bottom-up approach, is
capable of generating optimized land use spatial patterns (Wang et al.,
2015), but it often relies on other models to design conversion rules.
The Ant Colony Optimization is a bottom-up approach that solves op-
timization problems through feedbacks among “ants” (Liu et al., 2008),
but it fails to capture the spatial dynamic and heterogeneity of the
environment. Most of these optimization models focus on only one
aspect, either quantitative optimization of land use structures or spatial
optimization of land use patterns, which have limitations. For example,
it may not be possible to allocate the optimized land use structure to a
specific location due to spatial restrictions, and the aggregated land
area from allocated spatial patterns may fail to meet the requirements
of different economic sectors. Therefore, it is necessary to adopt a
coupled model to optimize both land use quantitative structure and
spatial pattern from the top-down and bottom-up perspectives, si-
multaneously.

In this paper, we propose a coupled model based on the MOP al-
gorithm and the Dynamic Conversion of Land Use and its Effects (Dyna-
CLUE) model to simulate land use changes under three scenarios, i.e.,
Business As Usual (BAU), Rapid Economic Development (RED), and
Ecological Land Protection (ELP). The MOP algorithm seeks optimized
solutions for each land use type subject to a series of constraints spe-
cified by a given scenario. The Dyna-CLUE model, which is dynamic
and spatially explicit, allocates the predicted land use changes to grid
cells following a bottom-up process (Verburg and Overmars, 2009). The
process determines the most suitable land use for each grid cell based
on location contexts, the total area of each land use type (derived from
the MOP), and a set of rules of spatial restriction (e.g., nature reserves)

(Verburg et al., 2012). The combination of the MOP and the Dyna-CLUE
makes it possible to optimize the land use quantitative structure and
allocate corresponding land use changes to the most suitable location.

Measuring the economic value of ES provides a basis for the inclu-
sion of ES in land use planning and the quantification of ecosystem
responses to land use changes. Methods of ES valuation can be divided
into two primary types. The first type involves data-based approaches,
which combine ecological models and primary data to quantify eco-
system processes and functions that underlie ES, and then convert the
derived ES into market prices (Martínez-Harms and Balvanera, 2012).
The data-based approaches are data-demanding and complex, and thus
are often applied in small-scale studies that focus on a few types of ES.
The second type includes the proxy-based approaches, which rely on
“benefits transfer” with secondary data such as LULC information
(Eigenbrod et al., 2010; Plummer, 2009). For example, the estimated
value for each land use type can be transferred from one location to
another with similar conditions (Costanza et al., 1997). Although
lacking consideration of ES variations over space and time (Eigenbrod
et al., 2010; Plummer, 2009; Song et al., 2015), the proxy-based
methods are more commonly used due to simplicity and the widespread
availability of LULC data. This study adopts the proxy-based approach
for the valuation of ES, because it is effective to model the trade-offs
among multiple ES arise from land use changes. Moreover, it facilitates
the spatial representation of ES, including the spatial distribution of
each individual type of ES, and key areas that undergo trade-offs among
ES (Martínez-Harms et al., 2016). Finally, this approach is also useful to
compare the costs and benefits of ecosystem-based management among
different scenarios, which can be difficult for the data-based approach
when future data are unavailable.

In this paper, we present a case study in a megalopolis in China to
investigate how land use changes under different scenarios will affect
the provision of ES by combing a coupled land use optimization model
and a proxy-based ES valuation model. Specific objectives include (1)
exploring the spatial determinants of the occurrence of each land use
type based on a spatial logistic regression model; (2) predicting the
spatial-temporal dynamics of land use in 2030 using the coupled MOP
and Dyna-CLUE model under three different scenarios, i.e., BAU, RED,
and ELP; (3) assessing the effects of land use dynamics on total ES
values and trade-offs among multiple ES under the three scenarios.

2. Study area

Wuhan city, the capital of Hubei Province, is located in the middle
reaches of the Yangtze River. The city is comprised of thirteen admin-
istrative districts (seven urban districts and six rural districts), covering
an area of ∼8450 km2 between latitudes of 29°58′–31°22′ N and
longitudes of 113°41′–115°05′ E (Fig.1). Wuhan city experiences a
subtropical humid monsoon climate, with a mean annual temperature
of 15.8–17.5 °C and a mean annual precipitation of 1150–1450mm.
Flat plains (< 100m) dominate the terrain of Wuhan, while mountains
(> 500m) are mainly located in the northwestern and northeastern
parts of the city. We can observe a few low hills in central and southern
parts of the city. The forests are mainly distributed in these hilly areas.
In addition, surface water accounts for a substantial area of Wuhan
(approximately 26%), primarily concentrated in the central part of the
city, forming large urban lakes such as East Lake, South Lake and Sha
Lake.

Wuhan city is a megalopolis in Central China with a total population
of 10.61 million. The Gross Domestic Product (GDP) reached 1,100
billion Chinese Yuan (CNY) in 2015, which ranked eighth among all the
cities in China. During 2000 to 2015, Wuhan city has been experiencing
accelerated urbanization, leading to extensive expansion of built-up
land (from 65,864 ha to 136,277 ha) encroaching the surrounding
ecological lands (i.e., cropland, woodland, grassland and water areas).
From 2000 to 2015, the total area of ecological lands in Wuhan has
decreased by 8%, and the areas of cropland, woodland, grassland
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shrunk by 13%, 4% and 2%, respectively (Li et al., 2016).

3. Materials and methods

3.1. Data and processing

Remotely sensed data of Landsat imagery (https://www.usgs.gov/)
are used to generate land use maps for 2000, 2005, 2010, and 2015. We
also derive the NDVI map in 2015 from the Landsat imagery data. We
adopt the classification scheme developed by the Chinese Academy of
Sciences (Liu et al., 2013) and identify six land use types, including
cropland, woodland, grassland, water area, built-up land, and unused
land. Specifically, linear surface features (e.g., roads, streams, and
shelter-forest belts), which can be hardly interpreted from Landsat
images (30 m resolution) are derived from a land use map produced by
the second national land survey of China in 2009. We also collect
ground truth points from the map to assess the accuracy of land use
classification. The overall accuracies for the classified maps in 2000,
2005, 2010, and 2015 are 76%, 80%, 84%, and 74%, respectively (see
Table S1 for a confusion matrix). Other spatial data include the SRTM
Digital Elevation Models (DEM) by NASA (https://www2.jpl.nasa.gov/
srtm/), and raster maps of soil erosion, soil texture (i.e., clay, sand and
silt contents), precipitation, GDP density and population distribution
provided by the Data Center for Resources and Environmental Sciences
of the Chinese Academy of Sciences (http://www.resdc.cn). All maps
are converted to layers with an extent of 1246×1529 grid cells and a
spatial resolution of 100 m × 100 m in ArcGIS 10.3. Finally, all da-
tasets are extracted by a boundary layer to obtain the data within the
study area.

In addition to spatial data, statistical data (e.g., population, GDP,

economic benefits of different land types, and labor engaged in various
sectors) are collected from historical statistical bureau of Wuhan city
(www.stats-hb.gov.cn). Table 1 lists the data sources and preprocessing
procedures of the data in this study.

3.2. The coupled land use change model

To simulate land use change trajectories in a spatially explicit
manner, we propose an integrated approach that couples the MOP
model and the Dyna-CLUE model, which is applied for the three sce-
narios (i.e., BAU, RED and ELP). The coupled model involves two
procedures. First, the MOP algorithm is applied to obtain the land use
structural optimization solution (called land use demand) by addressing
constrained optimization problems. Second, the predicted trends and
quantity of land use changes are spatially allocated to specific locations
by the Dyna-CLUE model, depending on the site characteristics and
suitability for distinctive land use types, the neighborhood relation-
ships, and the spatial policies and restrictions (Verburg and Overmars,
2009). Fig. 2 provides the framework of our coupled model including
the procedures of MOP and Dyna-CLUE.

3.2.1. MOP algorithm: land use structure optimization
We use the MOP algorithm with Lingo 10.0 software to predict the

area change of each land use type in 2030 under three scenarios, i.e.,
BAU, RED, and ELP.

3.2.1.1. Scenarios design. It is always challenging for policy-makers to
harmonize economic development and ecological protection. Here, we
design three land use scenarios in Wuhan city to inform more
appropriate recommendations for policy design and implementation.

Fig. 1. Study area: geographic location, land use and administrative districts of Wuhan City.
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The BAU scenario is generated from historical trends of land use
changes, which represents a baseline without policy intervention. The
RED and ELP scenarios are two optimized scenarios that subject to a set
of constraints based on the needs for food, green space and urban
development. The ultimate goal of the RED scenario is to maximize
economic benefits derived from the land system, whereas the ELP
scenario aims to protect ecosystems via land use planning and
management.

BAU scenario: In the BAU scenario, the area of each land use type in
2030 is predicted by a GM (1, 1) grey model (Deng, 1989) based on
historical land use data. Remotely sensed images in 2000, 2005, 2010
and 2015 are collected and classified, and linear interpolation is applied
to generate continuous land use data from 2000 to 2015.

RED scenario: The objective of the RED scenario is to maximize the
economic benefits provided by different land use types. The function of
estimating economic benefits is expressed as Eq. (1):

∑=
=

f x Eco x( ) ·
i

i i1
1

6

(1)

where f1(x) is the total economic benefits of all land use types, and
xi is the area for the ith land use type. The index i represents a land use
type (n=6), and i= 1, 2, ..., 6 indicate cropland, woodland, grassland,
water area, built-up land, and unused land, respectively; Ecoi is the
economic benefits derived from per unit area of the ith land use type.
Gross output values of farming, forestry, animal husbandry and fishery
are used to estimate the economic benefits obtained from cropland,
woodland, grassland and water area, respectively. The gross domestic
product (GDP) from the secondary and tertiary industry is derived as a
proxy for the economic benefits of the built-up land. Based on the
historical data from Wuhan Statistical Bureau (2001–2016) and the GM
(1, 1) prediction, the Ecoi values (unit: 104 CNY/ha) of cropland,
woodland, grassland, water area and built-up land are 6.70, 1.88,
198.04, 1.69, 1831.26, respectively. The Ecoi value of unused land is
assumed to be zero. To derive comparable estimates throughout the
time period, we convert the historical economic values to 2000constant
market prices. Finally, Eq. (1) can be rewritten as:

= + + + + +f x x x x x x x( ) 6.70 1.88 198.04 1.69 1831.26 01 1 2 3 4 5 6 (2)

Thus, the optimization function under the RED scenario is denoted as
max f1(x).

ELP scenario: The objective of the ELP scenario is to maximize the
ecological benefits provided by different land use types. We use eco-
system services value (ESV) and ecological capacity (EC) as the ecolo-
gical functions to measure ecological benefits.

The function for ESV is expressed as Eq. (3):

∑=
=

f x Esv x( ) ·
i

i i2
1

6

(3)

where f2(x) is the total ESV provided by the land system, Esvi is the
ESV of per unit area of ith land use type (see section 3.3 for details). The
total per-unit ESV of cropland, woodland, grassland, water area and
unused land are 5.80, 20.63, 8.56, 33.27, and 1.02 (unit: 104 CNY/ha),
respectively. The ESV of built-up land is set at zero, assuming no eco-
logical benefits from built-up land (Costanza et al., 1997). Thus, the
adjusted function for ESV can be expressed as Eq. (4):

= + + + + +f x x x x x x x( ) 5.80 20.63 8.56 33.27 0 1.022 1 2 3 4 5 6 (4)

The function for EC is expressed as Eq. (5):

∑= × −
=

f x Ec x( ) · (100 12)%
i

i i3
1

6

(5)

where f3(x) is the maximum EC provided by the land system, and
Eci=Qi×Yi is the total EC of per unit area of ith land use type; Qi is
called the equivalence factor, which is calculated as the ratio of the
biological productivity of the ith land use type to the global averageTa
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biological productivity of all bio-productive land use types; Yi is called
the yield factor, which is the ratio of local (i.e., Wuhan city) biological
yield of the ith land use type to the global average biological yield of the
same land use type (Li et al., 2010; Wang et al., 2014). The values for Qi

and Yi are taken from our previous study (Wang et al., 2014). According
to Wackernagel et al. (1999), 12% of the bio-productive land should be
reserved for protecting biological diversity, and thus is deducted in the
calculation of the EC. The adjusted function of EC can be expressed in
Eq. (6):

= + + + +f x x x x x x( ) 5.00 1.76 0.08 9.42 2.503 1 2 3 4 5 (6)

Thus, the multi-objective optimization function under the ELP sce-
nario is described as: max {f2(x), f3(x)}.

3.2.1.2 Constraints for RED and ELP scenarios. . The objective functions
for optimization by the MOP algorithm subject to certain constraints
based on empirical knowledge and existing city plans.

Constraint of the total land area: The sum of the area of each land use
type should equal to the total area of Wuhan city, as written in the
following equation:

∑ =
=

x 845000
i

i
1

6

(7)

Constraint of the total population: This constraint ensures that the
total population living on land should not exceed the carrying capacity
of land for human activity. According to “Wuhan City 2049 Strategic
Development Plan” (CUPSD, 2014) and GM (1, 1) model, the total
population of Wuhan city is projected to reach 14.2 million, and po-
pulation densities on agricultural land (cropland, woodland, and
grassland) and built-up land will be 0.55 and 48.93 persons per hectare
by 2030, respectively. Therefore, the constraint for the total population
can be written as:

+ + + ⩽ ×x x x x0.55( ) 48.93 1.42 101 2 3 5
7 (8)

Constraint of landscape diversity: Grassland and unused land are
frequently reclaimed for agricultural cultivation or urban development.
The proportion of grassland and unused land in Wuhan city has

declined from 1.71% to 1.50% during 2000-2015. To maintain the di-
versity of landscape as well as reserve space for urban development, we
assume that at least one percent of the total land should be grassland
and unused land by 2030. Thus, the constraint of land landscape di-
versity can be written as:

+ ⩾ ×x x 1% 8450003 6 (9)

Constraint of forest cover: The forest cover share is calculated based
on “Ecological Green Equivalent”, which refers to the “Green Amount”
that can guarantee coequal photosynthesis and provide ecological
functions of the quantitative forest. In the land system, land use types
that satisfy the green equivalent include cropland, woodland and
grassland, with coefficients of 0.46, 1.00 and 0.49, respectively, taken
from the study by Liu et al. (2002). The proportion of forest cover in
total land in Wuhan city is 28% in 2015 (WFB, 2016) and is expected to
reach at least 30% of the total area by 2030. Therefore, the constraint of
forest cover can be written as:

+ + ⩾ ×x x x0.46 0.49 30% 8450001 2 3 (10)

Constraint of cropland area: The amount of grain produced by
cropland (x1), together with grain imported, should be equal to or
larger than the demand of local population to secure food provision,
which can be expressed as:

⩾x f f f P f f· · · · ·1 2 3 4 0 1 (11)

where P is the predicted total population; f0 is the amount of grain
demand per capita, which is expected to reach 517.30 kg/capita by
2030 (Xin et al., 2015); f1 is the grain self-sufficient rate (37.55%); f2 is
the grain yield per unit cropland area (6,312 kg/ha); f3 is the rate of
crop planting proportion (40.72%); f4 is the multiple cropping index
(2.85). The values of f1 , f2 , f3 and f4 are predicted by GM (1, 1) model
based on historical data. Hence, a minimum of 376,825 ha of cropland
(lower bound) will be needed to guarantee local self-sufficiency in food.

In addition, the cropland area has undergone a drastic decline from
61.06% to 53.00% from 2000 to 2015 mainly due to the expansion of
built-up land. This conversion is unlikely to be reversed. Therefore, the
upper bound of cropland area is the area of the status quo, i.e., cropland
area in 2015. Therefore, the constraint of cropland area can be written

Fig. 2. Framework of the coupled model of MOP and Dyna-CLUE.
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as:

⩽ ⩽x376825 4478391 (12)

Constraint of woodland area: The area of woodland in Wuhan city has
declined from 78,261 ha to 75,096 ha during 2000-2015 and the de-
creasing trend is expected to continue. According to the “The 13th Five-
Year Plan for Gardens and Forestry Development of Wuhan City (2016-
2020)” (WFB, 2016) and the “Wuhan City 2049 Strategic Development
Plan” (CUPSD, 2014), the local government is planning to implement
more ecological protection programs. Hence, we set the area of 75,096
ha (i.e., the status quo) as the upper-bound value and the area of 64,001
ha (in 2030) predicted by historical data as the lower-bound value of
woodland area, written as:

⩽ ⩽x64001 750962 (13)

Constraint of grassland area: Since the 1990s, a substantial amount of
grassland has been converted to built-up land and water bodies, leading
to a decreasing trend. Here, we set 6,260 ha predicted by historical data
as the upper bound for grassland in 2030, which can be written as:

⩽ ⩽x0 62603 (14)

Constraint of water area: In the past few decades, large areas of water
in Wuhan city have been reclaimed for urbanization and crop produc-
tion. For instance, a large proportion of South Lake, Sha Lake, and
South Taizi Lake are dominated by built-up land under construction
(Wu, 2011). To prevent further shrinkage of lakes, the local government
has carried out the “Three lines and One Road Protection Plan for Lakes
in Central District” (WLRPB, 2012) for water conservation. Therefore,
we assume that the decreasing trend of water area will slow down, and
set the present area (173,125 ha) as the upper bound and the predicted
area (165,132 ha) as the lower bound for water area, written as:

⩽ ⩽x165132 1731254 (15)

Constraint of built-up land area: Although the “Land Use Planning of
Wuhan City (2006–2020)” (WLRPB, 2011) requires built-up land to be
lower than 185,000 ha by 2020, we expect that the built-up land will
exceed this limit after 2020 based the current growing trend. Mean-
while, the predicted area of built-up land is 267,203 ha in 2030. Thus,
the area of built-up land will be between 185,000 ha and 267,203 ha in
2030, written as:

⩽ ⩽x185000 2672035 (16)

The constraint of unused land area: Since Wuhan has been reclaiming
unused land for social-economic development, we expect a declining
trend for the area of unused land. Therefore, the area of unused land in
2030 should be smaller than the present area of 5,682 ha in 2015,
written as:

⩽ ⩽0 x 56826 (17)

3.2.2. Dyna-CLUE model: land use spatial allocation
We use the Dyna-CLUE model to allocate land use types in a spa-

tially-explicit manner. The model runs iteratively and determines the
most optimal land use type for each grid until the land demand pre-
dicted by the MOP algorithm for each scenario is satisfied.

3.2.2.1. Spatial policies and restrictions. Spatial policies and restrictions
can directly influence land use spatial patterns through restricting
certain land use changes in specific areas. Here, we specify three main
spatial restrictions. First, the Yangtze River should not be converted to
other land uses for all scenarios. Second, for the RED and ELP scenarios,
six water reserves (Wu Lake, Chen Lake, Shangshe Lake, Cao Lake,
Zhangdu Lake and Mulan Lake), two forest reserves (Jiufeng Mountain
and Qinglong Mountain), several scenic spots and land for special uses
(e.g., military, religion, and prison) are designated as spatial
restrictions. Last, for the ELP scenario, the model also restricts the
conversion of the 39 lakes protected by “Three lines and One Road

Protection Plan for Lakes in Central District” (WLRPB, 2012) to other
land use types.

3.2.2.2. Conversion settings. Conversion settings determine the change
direction and the cost of conversion from one land use type to another.
We specify two sets of parameters for each scenario, including the
conversion elasticity (ELAS) and the conversion matrix.

The ELAS specifies the cost of conversions, with value ranges from 0
to 1. A higher value indicates higher converting cost, and thus a higher
probability of irreversible change of a given location. A lower value, on
the contrary, indicates lower cost to convert a land use type to another.
In this paper, the ELAS values for model validation and BAU scenario
design are determined by the total change rate of the transition matrix
extracted from the land use maps during 2000-2015 (Table S2). Hence,
the ELAS values are 0.76, 0.65, 0.34, 0.76, 0.86, and 0.34 for each land
use type (Table S3). In addition, we adjust the values for RED and ELP
according to other empirical studies (Hu et al., 2013; Zhang et al.,
2015) and the specific context of each scenario.

The conversion matrix (xik) contains two values: value 1 indicates
that all possible conversions may occur, while value 0 indicates that the
conversion from the ith to the kth land use type is not allowed. The
values are also extracted from the transition matrix (Table S2). The land
use trend during 2000–2015 suggests that no conversions occur from
cropland to grassland or unused land, from woodland to unused land,
and from built-up land to grassland or unused land. Therefore, under
the BAU scenario, the xik values for these conversions are set at 0, and
others are set at 1. Under the other two scenarios, we assume that the
conversions from cropland, woodland, and built-up land to unused land
are not allowed. The detailed assumptions on all possible conversions
under the BAU, RED, and ELP scenarios are listed in Table S4.

3.2.2.3. Location suitability analysis. The location suitability analysis
evaluates the suitability of a location for a specific land use influenced
by a range of biophysical and socioeconomic factors (Bürgi et al.,
2005). Location suitability plays a dominant role in determining
competitive capacities of different land use types at a specific
location (Verburg et al., 2008). The potential factors that affect
location suitability in this study are selected based on literature
review and available data. We select twenty explanatory variables
(Fig. 3) from four categories (Table 2): (i) physical condition, which
includes elevation, slope, aspect, soil erosion, silt content, sand content,
clay content, and precipitation; (ii) spatial accessibility, which includes
distances to residence, river and lake, transport node (railways, roads,
ports and airports), and city center; (iii) socioeconomic factors,
including GDP and population; (iv) neighborhood effects of the six
land use types. The neighborhood effect measures whether the
occurrence of one land use type at a specific location positively or
negatively correlates with the occurrence of the other land use types in
neighboring grids. We use the enrichment factor by Verburg et al.
(2004) to quantify the neighborhood effects, defined as:

=F
n n

N N
/
/i j d

i d j d j

i
, ,

, , ,

(18)

where Fi,j,d is the enrichment of neighborhood d of location j with the
ith land use type; ni,d,j is the number of cells with the ith land use type in
the neighborhood d of grid j; nd,j is the total number of cells in the
neighborhood d; Ni is the total number of cells with the ith land use type
and N is the total number of cells in the study area. We use a 5×5
rectangular window (d=2) to cover the neighboring cells given a
specific grid. The enrichment factors of cropland, woodland, grassland,
water area, built-up land, and unused land are derived with the “Focal
Statistics” tool in ArcGIS 10.3.

We use a logistic regression model to examine the suitability of a
grid for a specific land use type influenced by the proposed factors
(Verburg et al., 2002). The model is expressed as:
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where p(yi=1) is the probability of occurrence for the ith land use type
on a given grid; m1, m2, ..., mn denote the explanatory variables; β0 is
the constant; β1, β2, ..., βn are the regression coefficients; ε is the error
term. The logistic regression model is applied for each land use type.
We adopt the same estimated parameters for location suitability for all
of the three scenarios.

Land use regression models often display the problem of spatial
autocorrelation (Overmars et al., 2003). One method to handle this

problem is spatial sampling that selects grids with sufficient distances
between each grid (Cheng and Masser, 2003). The key to this method is
to define a proper distance that can balance sample distribution with
sample size so that the model can reduce spatial autocorrelation and
meanwhile maintain robust estimation. Since the areas of grassland and
unused land are relatively small, we choose a distance interval of 500 m
for these two land use types, and 1500m for the others. For the sam-
pling procedure, we use the “Convert” tool (Verburg and Overmars,
2009) to generate balanced samples for the dependent variable. Even-
tually, we obtain 3072, 569, 420, 1339, 1056, and 328 samples for
cropland, woodland, grassland, water area, built-up land, and unused

Fig. 3. Explanatory variables of location suitability in Wuhan City.
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land, respectively. The ratio of samples for each binary dependent
variable is nearly 1:1.

We also test multi-collinearity of the explanatory variables using a
correlation matrix for each regression model (Table S5a–5f). After re-
moving variables that are strongly correlated, we use variance inflation
factors (VIF) and tolerance values to further test the multi-collinearity
issue for each model (Table S6). The tests show that the VIF and tol-
erance values of all explanatory variables are less than 5 and greater
than 0.2, respectively, suggesting little effects of multi-collinearity.

With estimated coefficients, we predict the probability of occur-
rence for each land use type (Table 2). We then use the probabilities of
correct prediction and receiver operating characteristic (ROC) statistics
to evaluate the goodness-of-fit of the regression models. The prob-
abilities of correct prediction for all land use types range from 63.5% to
93.2% (Table 2), while the areas under ROC curve (AUC) range from
0.76 to 0.96 (Figure S1), suggesting that all of the models are reliable
and adequate for future simulation.

3.2.3. Model validation
We use historical land use dataset from 2000 to 2015 to estimate

regression coefficients and calibrate model parameters. The land use
spatial distribution in year 2000 is regarded as a base map of the si-
mulation, other inputs include the quantity of change for each land use
type during 2000–2015 (extracted from historical land use maps), the
conversion settings, the spatial restrictions, and the location suitability
for each land use type on each grid. After running the Dyna-CLUE
model for 15 years, the simulated land use map for 2015 can be ob-
tained. Then, we evaluate the performance of the model by comparing
the classified land use map in 2015 from a remote-sensed image in
Wuhan city and the predicted map by the Dyna-CLUE model. The
overall model accuracy is 74% under basic spatial restriction (Yangtze

River is not allowed to convert to other land uses), indicating that the
model parameter settings are acceptable and can be applied to predict
future land use patterns. Hence, we use the validated parameters and
the classified land use map in 2015 to project land use changes in 2030
under the three scenarios.

3.3. Ecosystem services valuation

To determine the potential impacts of land use changes on the
provision of ES under the three scenarios, we adopt a proxy-based ES
valuation method proposed by Costanza et al. (1997) and adapted by
Xie et al., (2003, 2008). Costanza et al. (1997) grouped the global
biosphere into 16 types of land cover (such as croplands, forest, wet-
lands) and 17 types of ES, and then estimated the per-unit value of each
type of ES provided by each type of land cover (i.e., per-unit ESV
coefficients). However, some problems emerge when directly applying
the method for evaluating ecosystems in China. For example, some
types of ES are not represented in Chinese ecosystems (Fu et al., 2016),
and the per-unit ESV coefficients primarily estimated in developed
countries may fail to reflect people’s ‘willingness-to-pay’ for ES in de-
veloping countries like China, e.g., the ES provided by cropland may be
less valued but the ES provided by wetlands are overvalued (Lin et al.,
2013). Thus, Xie et al., (2003, 2008) proposed two major revisions of
the model. First, they reclassified the ES into nine categories, including
food production, raw materials, gas regulation, climate regulation,
water regulation, waste treatment, soil maintenance, biodiversity pro-
tection and landscape aesthetics. Second, they modified the per-unit
ESV coefficients of Costanza et al. (1997) and established the Chinese
“equivalent value coefficients” table (Table S7) based on two surveys of
700 Chinese ecologists.

According to the ES valuation method, the economic value of food

Table 2
Logistic regression analysis of the spatial determinants of land use spatial occurrence.

Variables Cropland Woodland Grassland Water Built-up Unused

Physical condition
Elevation (m1) −0.130*** −0.011† −0.005
Slope (m2) −0.190*** 0.749*** 0.290***

Aspect (m3) 0.001** 0.006*** 0.002† −0.005*** 0.004***

Soil erosion (m4) −0.116 −0.222 0.252 −0.438† −0.620†

Silt content (m5) −0.016†

Sand content (m6) −0.030* 0.017** 0.020*

Clay content (m7) 0.056*** 0.060**

Precipitation (m8) 2.33×10−4 *** −0.001*** −0.001***

Spatial accessibility
Distance to residence (m9) 0.134*** 0.063 −0.322*** 0.036
Distance to river and lake (m10) 0.474*** −0.113 −0.622*** −1.339*** 0.140† −0.972***

Distance to transport node (m11) −0.064* 0.067 0.028 0.120* −0.57*** 0.538***

Distance to city center (m12) 0.084*** −0.055*** 0.05***

Socio-economic factors
GDP (m13) 0.042 −0.037
Population (m14) −0.185*** −0.084* 0.314*** −0.024
Neighborhood effects (NE)
NE of cropland (m15) −0.866*** −0.311* −0.049
NE of woodland (m16) −0.015 −0.034 0.020 −0.023 0.069
NE of grassland (m17) −0.010† −0.023 −0.007
NE of water area (m18) −0.084** −0.228† −0.033 0.204*

NE of built-up land (m19) −0.034 −0.068† 0.019 −0.025
NE of unused land (m20) −0.013** −0.006 0.159†

Constant −4.522*** 8.009** −1.831 15.749*** 0.973** −1.558**

Evaluation of performance
AUC 0.760 0.955 0.785 0.887 0.850 0.836
0-correct percent 0.635 0.932 0.780 0.731 0.730 0.802
1-correct percent 0.760 0.848 0.701 0.851 0.786 0.718

*** p < 0.001.
** p < 0.01.
* p < 0.05.
† p < 0.10.

Y. Wang et al. Ecological Indicators 94 (2018) 430–445

437



production provided by cropland is defined as the standard value. The
values of all other ES are converted into equivalent values corre-
sponding to the standard value. The function of the conversion is ex-
pressed as:

= ×VC D Eij ij (20)

where VCij is the per-unit value (CNY/ ha) of the jth ES provided by the
ith land use type; Eij is the equivalent value coefficient of the jth ES
provided by the ith land use type in relation to food production of
cropland (Table S7); D is the economic value of food production of per-
unit cropland (i.e., the standard value). We calculate D based on agri-
cultural data of Hubei Province (NDRC, 2016) to reflect the willingness-
to-pay for ES of residents in Wuhan city. The agricultural data include
cultivated areas and net income for subsistence crops in Hubei, in-
cluding rice (early-, mid-, and late-season rice), wheat, and corn. The
estimation of D is expressed as:

= + +I P I P I PD r r w w c c (21)

where Ir, Iw and Ic are net income from grain production of rice, wheat
and corn, respectively; Pr, Pw and Pc are the shares of cultivated areas
for rice, wheat and corn, respectively. The estimated value for food
production of per-unit cropland (i.e., D) is 2811.19 CNY/ ha in 2015.

To represent the spatial distribution of ESV, the valuation of ES in
this study is conducted at the grid level (100m×100m). Note that the
land use type for each grid is predicted by the coupled land use change
model as described above. Thus, the total ESV of a given grid is de-
termined by adding up the values of all types of ES provided by the land
use of the grid:

∑= ×
=

a VCESVi
j

ij
1

9

(22)

where ESVi is the total ESV of a grid with ith land use type; a is the area
of each grid and equals to 1 ha.

The valuation of ES at spatial scales needs to consider the spatial
heterogeneity in ES provision of each land use type in different loca-
tions. Prior studies indicated that ES supply is positively associated with
the amount of biomass covering the land (de Groot et al., 2002). The
normalized difference vegetation index (NDVI) is widely used as an
indicator of vegetated coverage and relative biomass (Calderón-
Contreras and Quiroz-Rosas, 2017; Creech et al., 2016). Thus, we
conduct a grid-by-grid modification based on NDVI for grids covered by
cropland, woodland and grassland. The NDVI values for built-up land,
water area, and unused are relatively low or negative, and thus are not
considered. For a grid with the ith land use type, the biomass mod-
ification coefficient (bi) and the modified value (ESV'i ) is defined as:

∑′ = × ×
=

a VC bESVi
j

ij i
1

9

(23)

=b NDVI
NDVIi

i

i max, (24)

where NDVIi is the NDVI value for grids with the ith land use type, and
NDVIi,max is the maximum NDVI value of the ith land use type among all
grids.

Eventually, the total ESV of Wuhan city is the sum of the ′ESVi va-
lues of all grids.

4. Results

4.1. Projected land use changes during 2015–2030

The impacts of spatial determinants on the spatial occurrence of
each land use type is estimated by the logistic regression model
(Table 2). Both cropland and built-up land compete for areas with lower
soil erosion risks, better access to transport nodes, longer distances to
water, and in the vicinity to woodland. In addition, the occurrence of
cropland is also positively associated with precipitation, but negatively
with slope and population. Built-up land is more likely to occur in areas
with lower altitudes, closer to residence, and higher population density.
Woodland tends to occur in remote areas with higher slopes and longer
distances to city center.

Table 3 shows the predicted area and relative change of each land
use type under the three scenarios. In 2015, the cropland accounted for
the lion’s share (53%) of the total land area in Wuhan city, followed by
water area (20%) and built-up land (16%), while the area of woodland
was modest (9%). The coupled land use model predicts substantial
growths in built-up land between 2015 and 2030 under all of the three
scenarios. As expected, the BAU scenario presents the highest rate of
built-up land expansion (a 96% increase relative to 2015), which is
much higher than those under RED and ELP, with expansion rates of
58% and 36%, respectively. The increase in built-up land occurs at the
expense of all other land use types. Particularly, cropland experiences
the greatest area loss across all scenarios. Comparing the projections for
the BAU and ELP scenarios clearly demonstrates the importance of land
use planning and other regulations in protecting ecological lands. For
example, under ELP, the woodland and water area remain stable and
cropland shrinks at a lower rate, but unused land and grassland have
larger declines than under BAU.

Land use conversion matrix is also provided to reveal the major land
use transitions during the simulation period (Table 4). Under BAU, we
can see fewer pairs of conversions in the land system, with most of these
conversions going from other land use types to built-up land. In con-
trast, the two optimized scenarios (i.e., RED and ELP) present more
conversions among cropland, woodland, grassland, water area and
unused land, leading to both losses and gains in these land use types.
Instead, built-up land is rather stable with the total conversions to other
land use types being smaller than 1.2% under all scenarios.

Fig. 4 shows the predicted land use maps in 2030 and the changes
from 2015 to 2030 of the four dominant land use types under the three
scenarios. The built-up land is concentrated in the center of Wuhan city
and occupies a considerable part of the total area, especially under the
BAU scenario. Cropland and lakes locate at the periphery of built-up

Table 3
Projected land use areas and relative changes from 2015 to 2030 under BAU, RED, and ELP scenarios in Wuhan City.

LU type Land use (ha) Land use (%) Relative change rate (%)

2015 BAU RED ELP 2015 BAU RED ELP 2015-BAU 2015-RED 2015-ELP

Ecological landa 703,041 573,987 627,621 657,782 83.20 67.93 74.27 77.84 −18.36 −10.73 −6.44
Cropland 447,839 338,641 381,160 403,827 53.00 40.08 45.11 47.79 −24.38 −14.89 −9.83
Woodland 75,096 63,978 75,088 74,585 8.89 7.57 8.89 8.83 −14.81 −0.01 −0.68
Grassland 6,981 6,247 6,247 6,242 0.83 0.74 0.74 0.74 −10.51 −10.51 −10.59
Water area 173,125 165,121 165,126 173,128 20.49 19.54 19.54 20.49 −4.62 −4.62 0.00
Built−up land 136,277 267,192 215,149 184,989 16.13 31.62 25.46 21.89 96.07 57.88 35.74
Unused land 5,682 3,821 2,230 2,229 0.67 0.45 0.26 0.26 −32.75 −60.75 −60.77

a The total area of ecological land is the sum of the areas of cropland, woodland, grassland, and water area.
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areas, while woodland is highly concentrated and mainly distributed in
the northwest part of the city. The shrinkages of cropland are spatially
consistent with the gains of built-up land, confirming that urban

expansion in Wuhan city encroaches cropland, mostly along transport
lines, near residential areas and city centers, which is consistent with
the findings in the regression model (Table 2) and other empirical

Table 4
Land use conversion matrix from 2015 to 2030 under BAU, RED, and ELP scenarios in Wuhan City (%).

Scenarios From 2015 to 2030 Cropland Woodland Grassland Water area Built-up land Unused land

BAU Cropland 75.61 0.71 0.62 23.06
Woodland 0.03 80.35 3.30 0.79 15.5 0.04
Grassland 1.63 49.99 2.86 42.6 2.91
Water area 0.05 93.09 6.86
Built-up land 0.13 0.14 99.73
Unused-land 3.29 3.22 3.36 27.00 63.13

RED Cropland 84.97 1.10 0.18 13.75
Woodland 0.28 90.89 0.49 0.05 8.27 0.02
Grassland 0.09 6.09 62.23 0.60 30.58 0.42
Water area 0.05 0.41 0.04 95.2 4.31
Built-up land 0.03 0.13 0.06 99.78
Unused-land 5.51 10.45 10.08 4.26 31.19 38.51

ELP Cropland 89.92 0.22 0.13 0.05 9.68
Woodland 0.01 96.5 0.03 3.45
Grassland 0.49 2.08 78.57 1.30 16.67 0.89
Water area 0.03 0.02 0.01 99.11 0.81 0.01
Built-up land 0.48 0.41 0.10 0.18 98.84
Unused-land 6.48 7.16 0.48 16.9 31.29 37.7

Fig. 4. Spatial patterns of land cover in 2030 and changes between 2015 and 2030 under BAU, RED, and ELP scenarios, for cropland, woodland, water area and built-
up land.
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studies (Marcotullio and Lee, 2003; Mathur, 2005).
We also conduct a spatial analysis to identify the “hotspots” of

urban expansion by extracting the overlapping areas of built-up land
gains under all of the three scenarios. Most land in the seven urban
districts has already been developed for built-up uses by 2015, except
for Hongshan district, which still has some hotspots of urban expansion
in the eastern part during 2015–2030. As shown in Fig. 5, most of the
hotspots are located in the six remote districts, which suggests that
these areas would experience rapid urbanization during 2015–2030. By
2030, the most remarkable urban sprawl would occur in Caidian dis-
trict, followed by Huangpi, while Jiangxia and Dongxihu would have
relatively smaller urban area growths. Built-up land of Huangpi mainly
extends south towards the central area of Wuhan city or expands along
the boundary of the central area, rather than around the center of
Huangpi district. In contrast, built-up areas in Jiangxia and Caidian
expand in the opposite direction of the central area. New built-up land
tends to occur on the fringes of existing urban and rural residence. The
hotspots of Xinzhou and Hannan districts are more scattered than other
districts.

4.2. Variations in ecosystem service value during 2000–2030

Table 5 presents the variations in total ESV and individual ESV for
each land use type during 2000–2015, and the predicted ESV in 2030
under the three scenarios. Water regulation and waste treatment are the
two dominant types of ES in Wuhan city, which accounted for 29% and
25% of the total ESV in 2015, respectively. In contrast, food production
(4%) and raw material provision (3%) accounted for the smallest parts.
From 2000 to 2015, the total ESV in Wuhan city decreased by 3.63%,
and meanwhile, each individual ESV also declines. Specifically, food
production and soil maintenance experienced the greatest losses, while
water regulation and landscape aesthetics services remained stable.
This decreasing trend continues in the period of 2015–2030 for all

scenarios. Not surprisingly, the BAU scenario presents the greatest loss
of the total ESV with a relative decrease of 10.83%, followed by RED
(decrease by 6.04%) and ELP (decrease by 2.34%). Similarly, each in-
dividual ESV declines under all of the three scenarios. The shrinkages of
the total ESV and individual ESV demonstrate that the ongoing urban
sprawl in Wuhan city has profound negative impacts on ecosystems.

The spatial distributions of the total ESV of Wuhan city in 2030
under BAU, RED, and ELP scenarios are shown in Fig. 6A–C. The central
area and its surrounding areas where the landscape is dominated by
built-up land exhibit the lowest ESV. Areas with moderate ESV are
mainly located in the six remote districts, which is spatially consistent
with the distributions of cropland and grassland. The northern region
covered by forest and the areas covered by water surfaces represent the
highest ESV. Fig. 6D–F provides spatially-explicit information on the
gains and losses of ESV during 2015–2030 under alternative scenarios.
As expected, the BAU scenario is associated with greater ESV losses
both within and around the central area, compared with the other two
scenarios. The areas that present the largest ESV declines are caused by
the conversion of water bodies (e.g., ponds and lakes) to urban land.
The ESV gains primarily occur in remote areas, e.g., the northeastern
corner in Xinzhou district and the northern area in Huangpi district.
These gains are contributed by the transition from cropland to wood-
land.

4.3. Interactions between land uses and ecosystem services

To quantify how interactions between land use types bring about
trade-offs among multiple ES, we establish the ESV change matrix
(Table 6) based on the equivalent coefficients table (Table S7). It
summarizes ESV trade-offs driven by unit area (1 ha) land use transi-
tions. For example, the conversion from cropland to water area can lead
to trade-offs among the provision of multiple ES, i.e., a group of services
(e.g., food production, raw material, gas regulation and soil

Fig. 5. Hotspots for built-up land expansion.
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maintenance services) are “traded off” to enhance the provision of
another group of services (e.g., climate regulation, water regulation,
waste treatment, biodiversity protection, and landscape aesthetics). In
contrast, the conversion from cropland to built-up land leads to net loss
of all individual services, as the ES provided by built-up land is con-
sidered as zero. Combined with land use transition matrix from 2015 to
2030 (Table 4), the detailed ESV change for all predicted land use
transitions for the three scenarios can be estimated (Table S8a–c).

Here, we present the major land use transitions that are projected by
our coupled land use model during 2015-2030, and the associated
trade-offs among multiple ES. The transition from cropland to built-up
land, which dominates land use changes in Wuhan city, leads to the
largest ESV loss in total ESV, i.e., 2293, 1368 and 963 million CNY
under BAU, RED, and ELP, respectively (Table S8a–c). Specifically,
values of soil maintenance, waste treatment and food production ser-
vices are expected to decline to the greatest extent, primarily driven by
the conversion from cropland to built-up land.

Built-up land expansion at the loss of water area has stronger ne-
gative impacts on ecosystems, and triggers greater loss of ESV. The BAU
scenario exhibits the highest conversion from water area to built-up

land (6.86%) (Table 4), which leads to a net loss of 1514 million CNY in
total ESV (Table S8a) while the ES loss driven by this conversion under
ELP is only 179 million CNY (Table S8c). This is because the most strict
spatial regulations are involved in ELP to forbid the conversion of the
Yangtze River and the 39 lakes to other uses, according to the “Three
lines and One Road Protection Plan for Lakes in Central District”. Thus
only 0.81% of the total water area would be occupied by urban sprawl
under ELP (Table 4). The conversion from water bodies to built-up
areas leads to the greatest loss of water regulation and waste treatment
services. Forests have played important roles in local and regional
biodiversity protection, climate regulation, and gas regulation (Turner
et al., 2014). Thus, the conversion from woodland to built-up land is
associated with substantial loss in the provision of these services
(Table 6).

5. Discussions

5.1. The coupled model: a useful tool for land use planning

Establishing optimized land use schemes is a fundamental task of

Table 5
Variations in ecosystem service value during 2000–2030.

Ecosystem services ESV (109 CNY) ESV relative changes (%)

2000 2015 BAU RED ELP 2000–2015 2015-BAU 2015-RED 2015-ELP

Food production 1.79 1.60 1.28 1.41 1.48 −10.68 −19.60 −11.60 −7.02
Raw material 1.40 1.30 1.09 1.23 1.26 −7.08 −15.88 −4.94 −3.29
Gas regulation 2.27 2.10 1.75 1.98 2.02 −7.64 −16.47 −5.80 −3.85
Climate regulation 3.32 3.12 2.67 2.91 3.01 −6.26 −14.33 −6.47 −3.51
Water regulation 11.05 11.00 10.23 10.46 10.91 −0.42 −6.95 −4.93 −0.78
Waste treatment 9.54 9.37 8.58 8.80 9.21 −1.82 −8.43 −6.11 −1.68
Soil maintenance 3.26 2.95 2.39 2.69 2.78 −9.68 −18.83 −8.59 −5.66
Biodiversity protection 4.16 3.95 3.44 3.71 3.83 −5.11 −12.82 −6.14 −2.98
Landscape aesthetics 2.85 2.83 2.62 2.71 2.81 −0.69 −7.43 −4.39 −0.75
Total 39.64 38.20 34.07 35.90 37.31 −3.63 −10.83 −6.04 −2.34

Fig. 6. Spatial patterns of ESVs in 2030 (500m×500m cells) under BAU scenario (A), RED scenario (B), ELP scenario (C), and changes between 2015 and 2030
under BAU scenario (D), RED scenario (E), and ELP scenario (F).

Y. Wang et al. Ecological Indicators 94 (2018) 430–445

441



land use planning, which involves the allocation of land resources to
meet the demands of different economic sectors. However, traditional
land use structure optimization approaches adopted by previous land
use planning are not efficient in allocating the predicted land demands
to the most suitable locations. The coupled model developed in this
study integrates the MOP algorithm and the Dyna-CLUE model to si-
multaneously optimize land use quantitative structure and spatial pat-
tern from the top-down and bottom-up perspectives. First, the MOP
algorithm predicts optimized land use demands with the aim of max-
imizing economic or ecological objectives specified by different sce-
narios subject to a set of socioeconomic and ecological constraints. The
top-down process represents the land use decision-making at the macro-
level (e.g., country, province and local government) by making use of
land resources to achieve specific purposes according to policy desig-
nation. Then, the Dyna-CLUE model enables not only the allocation of
the projected land use demands to the most suitable locations, but also
the involvement of spatial development and restriction policies fol-
lowing a bottom-up process. The coupled model can be applied in land
use planning to assist the design of land use optimization schemes
concerning both quantitative structure and spatial pattern. In addition,
it can be extended by incorporating scenario analysis and ecological
modeling, which allows managers to predict future land use changes
and possible effects on multiple ES, and ultimately lead to more in-
formed policy design and implementation.

5.2. Trade-off analysis: a possible way to balance intended and unintended
ecosystem outcomes

Land management choices that enhance intended ES are often ac-
companied by unintended (often negative) ecosystem outcomes
(Defries et al., 2004). These outcomes may not occur at locations where
the decisions are made and involve time-lags, and thus are often ne-
glected by policy-makers and natural-resource managers. Therefore, the
first but critical step towards sustainable management of ecosystems is
to raise their awareness about the potential ES trade-offs that arise from
their decisions. To achieve this goal, we establish an ESV change matrix
(Table 6) that links each pair of land use transition with its associated

gains and losses among multiple types of ES. The matrix reveals that the
conversions between ecological land use types can trigger ES trade-offs
(i.e., enhance the provision of some but at the expense of others), but
the conversion from ecological lands towards a built-up use leads to net
loss of all types of ES. Since land use transitions in our study area are
dominated by the conversion from ecological lands to built-up land, all
individual ES present decreasing trends, indicating net losses of mul-
tiple ES due to urban expansion. We have not found other complex
interrelations of ES arise from land use changes, such as synergies,
trade-offs, win-no change, lose-no change and no change, as found in
other empirical studies (Haase et al., 2012; Turner et al., 2014). How-
ever, both this study and other studies on ES trade-offs have confirmed
the potential role of trade-off analysis in land use planning and other
environment policy making. It allows policy-makers to gain a com-
prehensive understanding of the potential effects of their decisions on
ES trade-offs (Rodríguez et al., 2006), and seek a balance between in-
tended and unintended ecosystem consequences (Defries et al., 2004).
In addition, although the ecological benefits provided by built-up land
can be neglected (Costanza et al., 1997), its socioeconomic benefits are
huge. In many developing countries, economic benefits are the primary
consideration in land resources management while the ecological
benefits are often traded off, which may impose accumulative pressure
on natural ecosystems and threatens regional ecological security. Thus,
trade-off analysis also offers a method for policy-makers to make sound
decisions that balance the socioeconomic and ecological benefits.

5.3. Policy implications

In this study, we choose Wuhan city as our study area, because it is a
typical representative of the rapid urbanization areas in China that
witness extensive built-up land expansions at the expense of ecological
lands, which have led to great losses of high-quality cropland, irre-
versible damages in the city’s water systems (both qualitatively and
quantitatively) (Du et al., 2010), and frequent episodes of heavy haze
(Lu et al., 2017). To restore the degraded ecosystems, the local gov-
ernment initiated several new ecological protection plans, including the
“13th Five-Year Plan for Gardens and Forestry Development of Wuhan

Table 6
Ecosystem service change matrix driven by per-unit LU land-use transitions, unit: CNY/(ha year).

Land use
transition
From To

Total ES
changes

Food
production

Raw
material

Gas regulation Climate
regulation

Water
regulation

Waste
treatment

Soil maintenance Biodiversity
protection

Landscape
aesthetics

Cropland Woodland 56842 −1883 7281 10120 8715 9333 928 7169 9811 5369
Grassland 10598 −1602 −84 2193 1659 2108 −197 2165 2390 1968
Water area 105279 −1321 −112 −590 3064 50601 37839 −2980 6775 12004
Built−up −22208 −2811 −1096 −2024 −2727 −2165 −3908 −4132 −2867 −478
Unused
land

−18301 −2755 −984 −1855 −2361 −1968 −3177 −3655 −1743 197

Woodland Cropland −56842 1883 −7281 −10120 −8715 −9333 −928 −7169 −9811 −5369
Grassland −46244 281 −7365 −7928 −7056 −7225 −1124 −5004 −7422 −3402
Water area 48437 562 −7393 −10711 −5650 41268 36911 −10148 −3036 6634
Built−up −79051 −928 −8377 −12144 −11442 −11498 −4835 −11301 −12678 −5847
Unused
land

−75143 −871 −8265 −11976 −11076 −11301 −4104 −10823 −11554 −5173

Grassland Cropland −10598 1602 84 −2193 −1659 −2108 197 −2165 −2390 −1968
Woodland 46244 −281 7365 7928 7056 7225 1124 5004 7422 3402
Water area 94681 281 −28 −2783 1406 48493 38035 −5144 4385 10036
Built-up
land

−32807 −1209 −1012 −4217 −4385 −4273 −3711 −6297 −5257 −2446

Unused
land

−28899 −1153 −900 −4048 −4020 −4076 −2980 −5819 −4132 −1771

Water area Cropland −105279 1321 112 590 −3064 −50601 −37839 2980 −6775 −12004
Woodland −48437 −562 7393 10711 5650 −41268 −36911 10148 3036 −6634
Grassland −94681 −281 28 2783 −1406 −48493 −38035 5144 −4385 −10036
Built-up −127487 −1490 −984 −1434 −5791 −52766 −41746 −1153 −9642 −12482
Unused
land

−123580 −1434 −871 −1265 −5426 −52569 −41015 −675 −8518 −11807

Note: Developed based on the equivalent coefficients table for ecosystem service value per unit area of each land use type in China, source: Xie et al (2008).
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City (2016–2020)”, the “Three lines and One Road Protection Plan for
Lakes in Central District”, and the “Wuhan City 2049 Strategic Devel-
opment Plan”. Due to its advantageous location, Wuhan City is identi-
fied as a new economic growth engine of China by the “Development
Plan for City Clusters along the Middle Reaches” in 2015 (China State
Council, 2015). Therefore, Wuhan City has a high development po-
tential and is currently at an accelerating stage of urbanization, which
will impose a greater challenge to the sustainable provision of ES.
Projecting future land use changes and their possible impacts on ES
under different development scenarios is useful for responding to the
challenge.

Thus, we design two optimized land use schemes for Wuhan city in
2030 by integrating the new ecological protection plans, with one
maximizing economic benefits (i.e., the RED scenario) and the other
maximizing ecosystem benefits (i.e., the ELP scenario). We also predict
land use structure in 2030 based on historical land use trends (i.e., the
BAU scenario), to which the two schemes of interest can be compared.
As a result, the rapid and extensive built-up expansion is effectively
controlled under either RED or ELP, with less ecological land being
converted to urban uses during 2015-2030, compared to BAU (Table 3).
More importantly, the two optimized land use schemes are more sus-
tainable and resilient, because they take into account the land needed
for “feeding” and “holding” the growing urban and rural population in
2030 predicted by the “Wuhan City 2049 Strategic Development Plan”.
The areas of woodland, grassland, and water bodies also satisfy the
demands of related forest and water resources protection plans. The six
water reserves, two forest reserves, and several major scenic spots in
Wuhan city are protected from being converted to other uses under
both RED and ELP. We also successfully introduce the “Three lines and
One Road Protection Plan for Lakes in Central District” into the design
of spatial restrictions of the ELP scenario to protect major city lakes
from encroachment by urban expansion. A comparison between the two
optimized scenarios shows more ecological lands are converted to
urban uses under RED to yield economic prosperity, while the ELP
scenario is more efficient in protecting water area and cropland, which
may contribute to building a more ecologically-friendly city. Conse-
quently, the land use changes under the ELP scenario has the smallest
negative impacts on ecosystems with the total ESV decreasing by 2.34%
relative to 2015, whereas the relative shrinkages under RED and BAU
are 6.04% and 10.83%, respectively. Although the two optimized land
use schemes fail to reverse the declining trends in ESV, they present
much smaller losses of ES than the BAU scenario. This suggests the
Wuhan city should reinforce the implementation of the natural re-
sources protection plans and spatial regulations, which can effectively
mitigate ecosystem degradation.

We also identify the “hotspots” of urban expansion in Wuhan city,
which are locations that would experience the conversion from crop-
land to built-up land as predicted by all of the three scenarios, and thus
are most likely to see urban sprawl at the loss of cropland than other
areas. Therefore, land use spatial regulations should be executed to
prevent the potential disorderly urban expansion in these hotspots and
prohibit the occupation of high-quality cropland. The hotspots analysis
also indicates most land use changes in the following decade will take
place in Hongshan district (in the central area) and the six remote
districts. Owing to differences in geographic, natural, and socio-
economic conditions, these districts exhibit different built-up expansion
modes, such as the “infilling” mode in Hongshan, the “edge expanding”
mode in Huangpi and Jiangxia, and the “leapfrogging” mode in
Xinzhou and Hannan. Thus, diversified land management strategies are
needed to guide the allocation of local land and other resources (such as
tourism and cultural resources) in different districts to achieve both
socioeconomic and ecological benefits. Moreover, these districts should
adopt more efficient use of existing built-up areas, such as redeveloping
shanty towns, “villages inside city”, and discarded factories, as sug-
gested by Liu et al. (2015b). In contrast, the “pancake-shaped” mode of
urban sprawl in the central area of Wuhan city and other metropolises

(e.g., Wang et al., 2007) that encroaches high-quality cropland and
green space should be avoided.

In this study, we adopt the proxy-based ES valuation method pro-
posed by Costanza et al. (1997) and set the ESV of built-up land at zero.
However, some built-up land may provide recreation or cultural ser-
vices, while some others have negative ecosystem outcomes, which
could be considered as having negative ESV (Liu et al., 2012). Hence,
our future work will involve the evaluation of ESV of built-up land, the
design of optimized land use schemes that balance socioeconomic and
ecological benefits, and the associated trade-offs driven by land use
changes at a larger temporal scale.

6. Conclusions

In this study, we explore how land use changes under different
development scenarios will affect the provision of ecosystem services
(ES) in a megalopolis (i.e., Wuhan city) facing intensified land use
conflicts. First, we design a coupled model that integrates the Multi-
Objective Programming (MOP) and the Dynamic Conversion of Land
Use and its Effects (Dyna-CLUE) models to project land use changes to
the year of 2030 for Wuhan city under three scenarios: Business As
Usual (BAU), Rapid Economic Development (RED), and Ecological Land
Protection (ELP). Then, we adopt a proxy-based ES valuation method to
predict the potential impacts of land use changes on the provision of ES
under the three scenarios. We find that (1) the predicted land use
changes during 2015-2030 are dominated by land use transitions from
ecological lands (including cropland, woodland, grassland land, and
water body) to built-up land. The annual expanding speed of built-up
area under the three scenarios shows the following sequences, BAU
(6.4%)>RED (3.9%)>ELP (2.4%). (2) The spatial pattern of built-up
land growth is consistent with the shrinkage in cropland, which is
projected to be the greatest near major residential areas and along
transport lines. (3) The projected land use changes during 2015-2030
would lead to declines in the provision of ES under all scenarios, but the
optimized land use scheme under ELP present the smallest loss of ES.
This suggests the implementation of natural resources protection po-
licies (e.g., forest and lake protection plans) and spatial restrictions
(e.g., forbid changes in natural reserves) can effectively mitigate eco-
system degradation. (4) The ES value change matrix proposed in this
work establishes the linkage between land use changes and ES trade-
offs, which could be used as a policy tool to assess potential effects of
land management choices, and guide the design of more informed de-
cisions.
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