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A B S T R A C T

Impervious surface dynamics have far-reaching consequences on both the environment and human well-being.
The expansion of impervious surface is often spontaneous and conscious, particularly in fast developing regions.
Thus, monitoring impervious surface dynamics with high temporal frequency in a both accurate and efficient
manner is highly needed. Here, we propose an approach to capture continuous impervious surface dynamics
using spatial-temporal rules and dense time series stacks of Landsat data. First, a stable area mask based on
image classification in the start and the end years is generated to remove pixels that are persistent or spatially
irrelevant. The Continuous Change Detection (CCD) algorithm is then employed to determine the change points
when non-impervious cover converts to impervious surface based on the property of temporal irreversibility.
Finally, the CCD time series models are calibrated for pixels with no change or multiple changes. We apply and
assess the proposed approach in Nanchang (China), which has been experiencing rapid impervious surface ex-
pansion during the past decade. According to the validation results, overall accuracies of image classification in
the start and the end years are 97.2% and 96.7%, respectively. Our approach generates convincing results for
impervious surface change detection, with overall accuracy of 85.5% at the annual scale, which is higher than
three commonly used approaches in previous studies. At the continuous scale, the mean biases of the detected
time of imperviousness emergence are +0.17 (backward) and −3.42 (forward) Landsat revisit periods (16 days)
for pixels with one single change and multiple changes, respectively. The derived impervious surface extent
maps exhibit comparable performances with five widely used products. The present approach offers a new
perspective for providing timely and accurate impervious surface dynamics with dense temporal frequency and
high classification accuracy.

1. Introduction

The Earth's terrestrial surface has been drastically urbanized under
rapid economic development and population growth. The percentage of
global urban population is expected to exceed 60% by 2050 (UN, 2014)
and approach 100% by 2092 (Batty, 2011). The demand for land space
for urban human life has never been greater. As a key characteristic of
urbanization, the expansion of impervious surface will also continue to
intensify, giving rise to pressure on the environment worldwide (Grimm
et al., 2008; Seto et al., 2012; Weng, 2012).

Impervious surfaces, such as rooftops, sidewalks and paved roads,
refer to land cover types that prevent water filtration into soil (Arnold
Jr and Gibbons, 1996). Impervious surface expansion not only indicates
the process of urbanization, but also manifests anthropogenic features
that affect environmental change (Weng, 2012). Increase in impervious
cover can influence land surface conditions in multiple ways, such as
modifying surface runoffs with frequent floods (Brun and Band, 2000),
transporting non-source pollution (Hurd and Civco, 2004), and in-
creasing land surface temperature through the urban head island effect
(Yuan and Bauer, 2007). Thus, tracking impervious surface dynamics is
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of crucial relevance to understanding urbanization impacts on eco-hy-
drological processes (Boggs and Sun, 2011; Hao et al., 2015), climate
change (Deng and Wu, 2013), and human health (Gong et al., 2012).
Moreover, it propels the engagement of policy-makers in better re-
source management and urban sustainable development, especially in
fast developing countries or regions where such data are commonly
unattainable (Gong et al., 2016).

Monitoring impervious surface expansion has been difficult because
it often follows a nonlinear trend with high spatial and temporal het-
erogeneity (Sexton et al., 2013). The advent of satellite remote sensing
offers unique advantages for studying such dynamics. Previous ap-
proaches for impervious surface change detection based on remotely
sensed imagery can be categorized into pre-classification and post-
classification (Singh, 1989). The pre-classification technique directly
classifies stacked images with different dates and regards each change
type as an independent class (Seto et al., 2002; Gao et al., 2012;
Schneider, 2012). Although this technique is capable of producing
temporally consistent impervious surface maps, its sample collection
requires not only land cover labels but also change type and duration,
making it difficult to obtain sufficient high-quality reference data for
model training and validation (Wu et al., 2017). The post-classification
analysis classifies each image individually and then derives “from-to”
information via per-pixel comparison (Singh, 1989; Olofsson et al.,
2013). This technique is widely used in the literature (Bagan and
Yamagata, 2012; Qin et al., 2017). However, it neglects the inherent
correlation of the classified impervious surface sequence, making ad-
ditional treatments necessary before change detection (Wu et al., 2017).

Currently, impervious surface areas occupy only 0.2–2.7% of the
total earth terrestrial land (Schneider et al., 2010; Song et al., 2016; Liu
et al., 2017), its associated land cover changes being even smaller.
Thus, much effort would be saved if spatially irrelevant areas were
removed before impervious surface change detection. This also alle-
viates spectral confusion between land cover classes that exhibit similar
characteristics, enhancing classification accuracy (Li and Gong, 2016).
The 2006 National Land Cover Database Impervious Surface Products
(NLCD Imperviousness 2006) is an example of such an attempt. Spe-
cifically, changed and unchanged areas are first separated based on the
2001 product (NLCD Imperviousness 2001) and new impervious sur-
face areas are then predicted in only the changed areas (Xian and
Homer, 2010). This algorithm serves as a baseline for developing more
sophisticated methods for impervious surface change detection (Yu
et al., 2016; Wu et al., 2017; Li et al., 2018).

It becomes clearer that denser temporal frequency is key to studying
the evolving nature of urban land cover and land use patterns.
However, a major limitation of existing impervious surface products
pertains to the relatively long temporal intervals. Such products as the
widely used NLCD Imperviousness (updated every five years) can no
longer meet the needs of understanding urbanization processes because
impervious surface growth can often be conscious or spontaneous
(Chen et al., 2014). Thus, researchers have endeavored to improve
methods of multi-temporal impervious surface change detection by
generating more frequent observations. Li et al. (2015) used Landsat
data to map urban dynamics of Beijing (China) during 1984–2013 at an
annual frequency. More recently, Zhang et al. (2017) created monthly
impervious cover maps of the Pearl River Delta by fusing Landsat and
MODIS time series data. Both studies adopted the post-classification
technique for change detection, requiring additional steps such as
temporal consistency check to refine the classification results. More-
over, it can be extremely laborious to classify each individual image for
a long time series or in a large area. Due to this dilemma, it is still
needed to improve the temporal mapping technique of impervious
cover regarding both efficiency and accuracy.

The expansion of impervious surface is the most irreversible process
among all land cover changes (Gao et al., 2012; Seto et al., 2011; Mertes
et al., 2015; Schneider and Mertes, 2014; Li et al., 2015; Zhang and
Weng, 2016), particularly in developing regions where urbanization is

at the booming stage. Based on this premise, two assumptions can be
derived. First, the conversion from non-impervious cover to impervious
surface is unidirectional, meaning that the inverse process is unrealistic
and should be avoided. Second, the existing impervious surface area
will persist in the subsequent years. Following these spatial-temporal
rules, mapping impervious surface dynamics can focus only on where
the newly emerged impervious surface areas are and when their asso-
ciated land cover changes occurred. Spatially, irrelevant areas such as
land cover changes between impervious surfaces (e.g., from sideway to
rooftop) and between non-impervious covers (e.g., from forest to
cropland) can be identified and removed before change detection
analysis. Temporally, monitoring continuous impervious surface dy-
namics can be simplified by detecting the change point from non-im-
perviousness to imperviousness via time series analysis. Although
straightforward, few studies directly leverage the spatial-temporal
rules, which is due primarily to two difficulties. The first is the lack of
data availability. Acquiring and pre-processing satellite imagery data
used to be laborious and expensive. Unfavorable atmospheric condi-
tions such as snow, cloud, and cloud shadow further reduce the number
of clear observations (Zhu et al., 2015). This issue becomes even more
critical when involving large spatial and temporal extents. The second
difficulty is the lack of appropriate algorithms. Traditional approaches
of detecting impervious surface changes are usually image or scene
oriented, which are constrained by satellite sensors. Temporal profile
analysis, however, requires extending the temporal scale beyond that of
the sensors.

The open availability of all Landsat archived data has revolutionized
our way of monitoring land cover and land use change (Woodcock
et al., 2008; Liu et al., 2018a; Wulder et al., 2018; Zhu et al., 2019a).
The mass of satellite records has promoted the development of spe-
cialized algorithms of time series change detection with multiple ap-
plications, such as BFAST (Verbesselt et al., 2012), LandTrendr
(Kennedy et al., 2010), and VCT (Huang et al., 2010). Among all the
algorithms, Continuous Change Detection and Classification (CCDC)
has exhibited great potential of identifying land disturbance through
time (Zhu and Woodcock, 2014; Pengra et al., 2016; Zhu et al., 2019b).
It has been widely used in studying the dynamics of the terrestrial en-
vironment, including deforestation (Olofsson et al., 2016; Zhu et al.,
2016b), urban greenness change (Zhu et al., 2016a), and impervious
surface expansion (Deng and Zhu, 2018).

The present study aims to develop an efficient approach for cap-
turing continuous impervious surface dynamics based on the spatial-
temporal rules. The term “continuous” means that an impervious sur-
face extent map at any given time during the study period can be ob-
tained. To achieve this goal, we adopt the CCDC algorithm and use
dense time series stacks of Landsat data for impervious surface change
detection. We test the proposed approach in Nanchang, China, a city
characterized by rainy climate, heterogeneous landscape and rapid
impervious surface growth, over the study period of 2002–2016.

2. Study area and data source

2.1. Study area

The study area is Nanchang City (28°10′-29°11′N, 115°26′-
116°34′E), China, which covers an area of 7194 km2 in the middle and
lower reaches of the Yangtze River with a population of approximately
5.30 million (Jiangxi Statistics Yearbook, 2017). The boundary of
Nanchang encompasses nine administrative districts/counties and
spans two Worldwide Reference System-2 (WRS-2) scenes (Fig. 1).
Among the nine districts, four (Donghu, Xihu, Qingyunpu, and Qing-
shanhu) are located in the center of Nanchang and regarded as the
downtown area or the urban core, while the other five in peripheral
regions are characterized mostly by peri-urban or rural areas. We select
Nanchang as the study area for two main reasons. First, Nanchang ex-
emplifies many other cities in China that have been experiencing
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phenomenal urbanization during the past decades. During 2000–2016,
the city's population has increased by 11.57% (Jiangxi Statistics Year-
book, 2000–2017). At the same time, rapid industrialization and mas-
sive infrastructure construction have led to drastic land cover changes
such as conversion from agricultural and natural lands to urban lands,
which are accompanied with substantial impervious surface expansion.
Second, the composition of land cover in Nanchang is highly hetero-
geneous. Such a variable and dynamic geographical environment offers
a valuable opportunity to examine our approach of continuous change
detection of impervious surface.

2.2. Landsat data

We accessed Collection 1 Level-2 Landsat data from U.S. Geological
Survey (https://espa.cr.usgs.gov/) via the platform of Google Earth
Engine (GEE), which is a cloud-based geospatial analysis platform with
massive computational capabilities (Gorelick et al., 2017). We obtained
all available Landsat 5, 7, and 8 images with identification indices of
“LANDSAT/LT05/C01/T1_SR”, “LANDSAT/LE07/C01/T1_SR”, and
“LANDSAT/LC08/C01/T1_SR”, respectively, in GEE. We filtered the
image collections by the extent of the study area (WRS-2 Path/Row
121/40 and 122/40) and study period (from 2002 to 2016). For each
Landsat image, six surface reflectance bands, one thermal band and one
quality assessment band were employed (Zhu et al., 2015; Zhu et al.,
2016a). It should be noted that the C Function of Mask (CFMask) al-
gorithm (Zhu and Woodcock, 2012; Zhu et al., 2015) has been in-
corporated in the quality assessment band so that poor quality ob-
servations, including fill, snow, cloud and cloud shadow, have been
labeled, leaving the remaining clear observations. Landsat Collection 1
(https://landsat.usgs.gov/landsat-collections) consists of three cate-
gories, including Tier 1, Tier 2, and Real-Time. We used data only in
Tier 1 because they meet the formal quality criteria and thus are most
suitable for time series analysis. In total, 719 Landsat scenes were in-
cluded. Among these scenes, Landsat 7 has the largest number of
scenes, followed by Landsat 5, and Landsat 8 the least (Fig. 2a). The
spatial distributions of total observations, clear observations, and clear
observation percentages for all Landsat scenes are shown in Fig. 2b-d.

2.3. Auxiliary data

In this study, we use several auxiliary data in addition to Landsat
time series images. Very High Resolution (VHR) imagery was obtained

from Google Earth and historical orthophotos provided by Department
of Natural Resource of Jiangxi Province. Vector data of administrative
township/village boundaries were acquired from National Geomatics
Center of China. Global inter-calibrated nighttime lights (NTLs) data
(Zhang et al., 2016) were provided by Yale University (https://urban.
yale.edu/data).

3. Methods

Fig. 3 shows the flow chart of the proposed approach, which in-
cludes two major stages, spatial masking of stable area and temporal
change detection analysis. First, we exclude areas that are temporally
persistent or characterized by irrelevant land cover changes. This pro-
cedure is implemented by independent land cover classification in the
start and end years. Second, we perform a per-pixel change detection
analysis for the remaining areas to detect when and where non-im-
pervious land cover convert to impervious surface. Detailed procedures
of the approach are described below.

3.1. Creation of stable area mask

According to the irreversibility assumption, impervious surface ex-
pansion during the study period should be bounded by its initial and
final states. Given the impervious surface extent maps in the start and
end years (i.e., 2002 and 2016), all image pixels can be divided into 1)
target pixels where the transition from non-imperviousness to im-
perviousness occurred, 2) persistent imperviousness, and 3) persistent
non-imperviousness. Only target pixels were selected for further change
detection (Fig. 4). This procedure not only saves unnecessary workload
but also alleviates the confusion between impervious surface and other
land cover types.

3.1.1. Feature extraction
To overcome the influence of cloud and cloud shadow, a pixel-based

compositing approach (White et al., 2014) was applied before the
classification procedure. This approach first calculates four scores for
each pixel, including sensor score, day of year score, distance to cloud
or cloud shadow score, and opacity score. A comprehensive total score
is then generated as the sum of all these scores. The pixel with the
highest comprehensive score is used as the composited output for the
analysis. Since combining images from different seasons is advanta-
geous in producing high classification accuracy (Dannenberg et al.,

Fig. 1. Location of study area (Nanchang, China) and its administrative units at the district/county level.
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2016; Zhu et al., 2012), we applied this compositing approach for each
season and generated a multi-seasonal compositing set (spring,
summer, autumn and winter) in 2002 and 2016, separately. From each
compositing result, we extracted eight types of image features, in-
cluding six surface reflectance (green, blue, red, NIR, SWIR1 and
SWIR2) bands and two spectral indices, which are the Normalized
Difference Vegetation Index (NDVI) (Tucker, 1979) and the modified
Normalized Difference Water Index (mNDWI) (Xu, 2006). Eventually, a
total of 32 feature bands were adopted for the single year classification.

3.1.2. Classification and mask generation
Based on the geographical environment of the study area, we de-

signed a six-class scheme including impervious surface, bareland,
cropland, forest, wetland and water. Training samples were collected
through visual interpretation of VHR imagery and Landsat data ac-
quired in 2002 and 2016, separately. Special care was taken to wetland
because it is easily confused with other classes in spectral character-
istics for a single season (e.g., bareland in winter and water in summer).
Thus, images from continuous Landsat data were used to support VHR
imagery interpretation as needed. For each year, we randomly gener-
ated 3500 training sample points. After visually cross-checking and
removing pixels deemed incorrect, there remained 2931 sample points
for the 2002 image, including 64, 1527, 832, 220, 151, 137 points for
bareland, cropland, forest, impervious surface, wetland, and water,
respectively, and 3119 sample points for the 2016 image, including 87,

1497, 837, 340, 222 and 136 points for bareland, cropland, forest,
impervious surface, wetland, and water, respectively.

To create the land cover maps, Random Forest Classifier (RFC) was
applied because it is robust in mapping large-area land cover and
particularly effective when a large number of features is involved (Pal,
2005; Zhu et al., 2012; Gong et al., 2013; Zhang et al., 2018a). To
balance computation time and classification performance, we im-
plemented RFC with 500 trees and the square root of the total number
of input variables as the number of variables to split each node. Note
that the initial output of RFC for each year was a six-category land
cover map. The six land covers were re-classified into impervious sur-
face and non-impervious surface.

3.1.3. Accuracy assessment for classification
The accuracy assessment for each of the impervious surface classi-

fication in 2002 and 2016 was conducted in two ways. In the first va-
lidation method, 2000 stratified random samples were independently
selected from the classification result, with one half collected from
impervious surface areas while the other half from the non-impervious
areas (Li and Gong, 2016). Based on these validation samples, we ob-
tained the confusion matrix and calculated quantitative metrics in-
cluding overall accuracy (OA), Kappa coefficient, producer's accuracy
(PA) and user's accuracy (UA). Previous studies suggested that using
only confusion matrix may not be sufficient to evaluate the perfor-
mance of mapping impervious surface, particularly in peri-urban and

Fig. 2. Landsat 5–8 Collection 1 Level-2 products used in this study. (a) Sensor and seasonal distribution. (b)-(d) Spatial distributions of total observations, clear
observations, and clear observation percentage, respectively.
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rural areas where settlements are highly fragmented (Schneider, 2012;
Qin et al., 2017). Thus, we conducted a second validation method by
testing the classified map regarding the presence/absence of impervious
surface clusters outside of the downtown areas (i.e., the five districts in
peripheral areas of Nanchang) against reference data conjunctively
collected from VHR imagery and administrative village distribution
data. Specifically, we randomly selected 60 test clusters, each of which
is comprised of at least two contiguous pixels of imperviousness, and
created a 3-km circle buffer for each cluster. Then, we enumerated all
impervious surface clusters within each buffer for both the classified
map and the reference data (Schneider, 2012). We finally used scatter
plots of the cluster numbers and their fitted lines to validate the mapped
impervious surface. The above-mentioned assessments were conducted
for the two epoch classification results, separately.

3.2. Continuous change detection

3.2.1. The CCD algorithm
The CCDC algorithm assembles all available Landsat observations

for each pixel to estimate time series models and uses the models to
predict future observations (Zhu and Woodcock, 2014; Zhu et al.,

2015). A break will be labeled if the values of new consecutive ob-
servations are out of the expected range, and a new time series model
will be estimated until the next break is detected or the observations are
exhausted. The time series models are composed of Fourier models so
that both intra-annual (phenological) and inter-annual (gradual)
changes can be identified. A detected break indicates an abrupt change
of the land surface environment, which is usually caused by land use
and land cover change. The algorithm further classifies a pixel to
identify the land cover types before and after a break occurs.

In this study, we used only the change detection component of
CCDC (https://github.com/USGS-EROS/lcmap-pyccd) to derive land
cover change information for continuous impervious surface dynamic
analysis. Thus, it was renamed CCD hereafter. We used default para-
meters for running the CCD algorithm, namely 0.99 change probability,
6 consecutive observations, and a maximum of 8 coefficients for the
time series models. Since CCD requires several observations to initialize
the algorithm, we recorded the start and end times of the entire time
series for each pixel, which define the interval of the time series model.

3.2.2. Change detection analysis
Once the time series models were estimated by CCD, the per-pixel

Fig. 3. Flow chart of the proposed approach for tracking continuous impervious surface dynamics. SR, BT and QA denote surface reflectance, brightness temperature
and quality assessment, respectively.
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change detection analysis can be conducted. Fig. 5 demonstrates three
scenarios under which impervious surface dynamics are modeled by
CCD for each pixel. In the first scenario, the pixel changes only once and
thus two time series models are estimated (Fig. 5a). By identifying the

time point of the break, we can determine when the pixel changed from
non-impervious cover to impervious surface. It should be noted that
there might exist a short “disturbed” period between the two estimated
models due to the large spectral variability, in which case we define the

Fig. 4. Illustration of the spatial masking process.

Fig. 5. Three scenarios in change detection analysis with (a) one single abrupt change, (b) no abrupt change, and (c) multiple abrupt changes. Only the NIR band is
displayed. Invalid observations (fill, snow, cloud and cloud shadow) are identified by the quality assessment (QA) band.
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start date of the latter model as the time point that separates the two
estimated models (Zhu et al., 2015).

In the second scenario, no break is recorded and thus only one single
time series model was estimated (Fig. 5b). In other words, the pixel
does not experience any land disturbance throughout the entire period
and is identified as a “persistent” pixel. Since stable areas have been
excluded in the masking procedure, “persistent” pixels could be due to
classification errors and thus should be corrected. For the purpose of
validation and correction (see Section 3.2.3), we developed a threshold-
based approach to separate persistent impervious and non-impervious
pixels identified by CCD. Given that impervious surfaces are positively
correlated with land surface temperature and negatively correlated
with NDVI (Zhang et al., 2017), an index Κ can be defined as:

K BT
NDVI

= (1)

where BT is the brightness temperature derived from the thermal band.
We then calculated the mean values of impervious surfaces (Kimp) and
non-impervious surfaces (Knon) using all training samples. For pixel
(x,y), the equation of identifying its class can be written as:

IMP K K K K1,
0,otherwisex y

x y imp x y non
( , )

( , ) ( , )= <
(2)

where IMP(x,y) is the final binary result, with “1” denoting persistent
imperviousness and “0” persistent non-imperviousness.

The third scenario illustrates a more complex land conversion case
in which multiple breaks are detected (Fig. 5c). This could happen
because of two reasons. First, land conversions between non-impervious
covers (e.g., a break where forest changed to bareland due to clear-
cutting) occur before impervious surfaces eventually emerge. Second,
intra-transformation between different types of impervious surface
(e.g., from pavement to building) can also be detected and identified as
a break by CCD. Therefore, the aim here is to detect the “true” change
time when natural covers were converted to impervious surfaces by
excluding the breaks with “false” alarms. Fig. 6 illustrates the procedure
of false alarm exclusion for a pixel. Given time series models M={M1,
M2, …,Mn}, their start times and periods can be obtained and expressed
as T={T1, T2, …, Tn} and P={P1, P2, …, Pn}, respectively. The entire
study period can be divided into two parts, including a pre-change
period with non-impervious cover and a post-change period with im-
pervious surface. Since impervious cover, as mentioned above, tends to
exhibit higher land surface temperature but lower NDVI than non-

impervious cover (Zhang et al., 2017), we can expect that the value of Κ
for the post-change period reaches the maximum when the whole study
interval is correctly separated. Therefore, the aim is to find the time
point Ti when an objective function OTi can be maximized. The equation
of the objective function can be written as:

O
BT

NDVI
i n, [2, ]T

T
post

T
posti

i

i

=
(3)

where n denotes the times of change during the entire study period,
while BTTi

post and NDVITi
post are the average brightness temperature and

NDVI fitting values, respectively, during the post-change period de-
termined by Ti. They can be calculated as:

BT
P

BT fi1 _ tT
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i l

l l=
=
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P
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(5)

where BT_fitjnor and NDVI_fitjnor are normalized brightness temperature
and NDVI fitting values, respectively, at Julian date j. They can be
obtained as:

BT fit
BT fit BT fit

BT fit BT fit
_

_ _
( _ _ )j

nor j
min

max min=
(6)

NDVI fit
NDVI fit NDVI fit

NDVI fit NDVI fit
_

_ _
( _ _ )j

nor j
min

max min=
(7)

where BT_fitj and NDVI_fitj are model fitted brightness temperature and
NDVI values, respectively, at Julian date j; BT_fitmax, BT_fitmin, NDVI_-
fitmax and NDVI_fitmin are modeled maximum and minimum values of
brightness temperature and NDVI, respectively, during the whole study
period.

3.2.3. Accuracy assessment for change detection and error-adjusted area
estimates

We used continuous Landsat data themselves as the primary source
for change detection performance validation because currently no other
reference data can provide comprehensive change detection assessment
both temporally and spatially (Zhu et al., 2015). Visual interpretation of
continuous Landsat time series from all seven bands facilitated the
process of identifying the time of land cover change occurrence. VHR

Fig. 6. False alarm exclusion for pixels with multiple abrupt changes. M1-M5 represent five CCD derived time periods. NDVI_fit and BT_fit represent fitted NDVI and
thermal time series, respectively. Abrupt changes (T2-T5) are displayed as black dots.
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imagery was used to refine the judgements. We employed a stratified
random sampling scheme to collect independent validation samples
(Gao et al., 2012). As illustrated in Table 1, we stratified all unmasked
pixels into 15 classes based on the predicted time points of change from
non-impervious to impervious cover, and randomly selected 40 sample
points from each class (a total of 600 points) for change detection va-
lidation.

After acquiring the validation samples, we evaluated the change
detection performance at two temporal scales, which are the annual
scale and the continuous scale. At the annual scale, we derived the
confusion matrix based on the 15 classes identified in Table 1. We
compared our validation results to those derived from three previously
published approaches on impervious surface change detection, in-
cluding 1) post-classification without temporal consistency check (Post-
1 approach), 2) post-classification with temporal consistency check
(Post-2 approach), and 3) the original CCDC algorithm. Detailed de-
scriptions of the three approaches are provided in Appendix A. At the
continuous scale, we used only the samples where changes were de-
tected by CCD to calculate their temporal biases (Zhu and Woodcock,
2014). The temporal bias is defined as the difference of land cover
change time between our modeled outputs and the reference results. In
this way, we evaluated not only the relative error of the estimated time
point of change but also the overall tendency of forward or backward
bias. Since we conducted false alarm exclusion for pixels with multiple
changes, this validation approach was performed separately for pixels
with one single change and multiple changes.

We further used the 600 validation samples to correct our annual
impervious surface area estimates as well as to quantify their un-
certainties (Olofsson et al., 2013; Li et al., 2015; Zhu et al., 2016a). We
first re-classified the samples depending on the year of interest. For
example, if we aimed to estimate the expanded impervious surface area
before and after the year of 2010, the validation samples would be re-
assigned into four categories, which are persistent impervious surface,
persistent non-impervious surface, impervious surface emerged before
2010, and impervious surface emerged after 2010. Then, a confusion
matrix was built based on this classification scheme. Finally, we fol-
lowed the method described by Olofsson et al. (2013) to obtain the
corrected impervious surface area estimate and its associated un-
certainties (i.e., 95% confidence interval).

3.3. Creation of impervious surface maps and comparison with existing
products

After acquiring the impervious surface extent at the initial stage (the
year of 2002) and the per-pixel distribution of new imperviousness
emergence, an impervious surface map at any given time within the
study period can be generated. We further examined the generated
impervious surface maps by comparing them with contemporary im-
pervious surface products. In this study, we selected five well-estab-
lished datasets, including GLC30, FROM-GLC, GHS, CAS-NLCD and
NUACI (Table 2). These products were chosen because 1) they are
widely used and include impervious surface (or homologous classes
such as built-up or human settlement) as an independent land cover
type; 2) they have relatively fine spatial resolutions comparable to that

of the Landsat products. We selected a fixed day of the year (December
31st) to generate the multi-epoch impervious surface maps. The inter-
comparisons were then implemented at two stages. First, we compared
our error-adjusted results with the reference products in terms of total
impervious surface area statistics in different years. Second, we selected
the year of 2010 (most products are available) to evaluate the im-
pervious surface mapping performance with visual interpretation.

4. Results

4.1. Classification and stable area mask

As shown in Table 3, the classifications of impervious and non-im-
pervious surfaces of Nanchang in 2002 and 2016 both have high ac-
curacies, with OAs of 97.2% (kappa= 0.943) and 96.7%
(kappa= 0.935), respectively. The total area of impervious surface in
2002 accounted for only 2.7% of Nanchang, while the percentage of
impervious surface in 2016 increased to 7.5%. For impervious surface,
in 2002, the PA (95.8%) is slightly lower than the UA (98.6%), sug-
gesting a higher omission error than a commission error. In 2016,
however, the PA (98.2%) of impervious surface is larger than the UA
(95.2%).

Fig. 7 further reveals satisfactory classification performance in
terms of the impervious surface clusters in peri-urban and rural areas of
Nanchang in 2002 and 2016. Based on the reference data, our results
explain over 94% of the sample variations in both years with tight fits
to the 1:1 line, suggesting the impervious surface maps have correctly
identified cluster numbers in most sites. In addition, the map of 2002 is
found to have fewer impervious surface clusters, compared to the map
of 2016.

Fig. 8 shows the classified land cover maps of Nanchang in 2002 and
2016, as well as the maps of stable and changed areas. In 2002, im-
pervious surface areas were concentrated in the central Nanchang city,
along the eastern shore of Ganjiang river, while the imperviousness
clusters in relatively small pieces were scattered in the peri-urban and
rural regions. In 2016, impervious cover in the urban core expanded to
the peripheral regions, with greater spatial heterogeneity and various
geometric structures due to the increased presence of mixed-used areas.
The map of stable and changed areas (Fig. 8c) based on the classifica-
tion shows that the conversion of cropland to impervious surface, which
has occurred mainly on city outskirt, dominates the land cover changes
in Nanchang during 2002–2016. The total area of impervious surface
expansion is 345 km2, accounting approximately 5% of the whole study
area.

4.2. Change detection performance

To evaluate the performance of impervious surface change detec-
tion, we map three key outputs of the CCD time series models, including
CCD start time, CCD end time and the number of abrupt changes during
2002–2016 (Fig. 9). For the changed pixels, CCD start times range from
2002-01-07 to 2002-12-26, with over 90% starting before 2002-09-30
(Fig. 9a). Comparably, CCD end dates, which range from 2016-01-15 to
2016-12-24, have a wider distribution (Fig. 9b). Spatially, the western

Table 1
Class scheme for validating change detection performance.

Category T2002 T2003 … Ti … T2015 T2016 Description

Non-imp 0 0 0 0 0 0 0 Persistent non-impervious cover
2003 0 1 1 1 1 1 1 Impervious cover since 2003
2004 0 0 1 1 1 1 1 Impervious cover since 2004
… … … … … … … … …
2015 0 0 0 0 0 1 1 Impervious cover since 2015
Imp 1 1 1 1 1 1 1 Persistent impervious cover

Note: Ti denotes land cover label as non-impervious (0) or impervious (1) in Year i.

C. Liu, et al. Remote Sensing of Environment 229 (2019) 114–132

121



part of the study area tends to have later end time than the eastern part.
This is because the western part has the more available observations in
the overlapped areas of two Landsat scenes. Based on these two results,
we interpret and discuss further change detection performance by fo-
cusing on the years from 2003 to 2015. Fig. 9c, d show the spatial
distribution and percentages of the numbers of no abrupt change, one
single abrupt change, and multiple abrupt changes. Within the changed
area, nearly half (49.81%) of the pixels have changed only once, while
the proportion of pixels with no change accounts for only 7.84%.
Meanwhile, the percentage of pixels with multiple changes (equal to or
greater than two) is 42.35%, among which few changed more than
three times (3.53%). Spatially, pixels with one single change are com-
monly found in all administrative districts/counties of Nanchang, while
those with multiple changes are mainly distributed in the southern part
of Nanchang County and northern part of Xinjian District.

To test if the index K effectively separates persistent impervious and
non-impervious surface areas, we compare their frequency distributions
(Fig. 10). Compared to non-impervious cover, impervious surface has a
much wider distribution of K, suggesting greater heterogeneity in terms

of its spectral and thermal characteristics. The mean values of K for
impervious and non-impervious surfaces are 23,042 and 4900 (4.36
and 3.69 in the logarithmic form), respectively, with their difference
statistically significant (|t|= 16.75, p=0.000). This indicates that the
index performs well in differentiating persistent imperviousness from
non-imperviousness.

Fig. 11 compares performances of impervious surface change de-
tection at the annual scale between our approach and the three pre-
viously published approaches. Among all four approaches, our pro-
posed approach exhibits the highest OA (85.5%), followed by the
original CCDC (76.5%), while post-classification without temporal
consistency check has the lowest OA (58.3%). Regarding the 15 cate-
gories described in Table 1, their PA and UA values substantially vary
across all the four approaches. Compared to our approach, original
CCDC has generally similar UAs but lower PAs, suggesting a larger
omission error. This may be because that the original CCDC algorithm
cannot well handle intra-class transformation of imperviousness and
hence may produce illogical outputs for time series classification, such
as conversion from impervious to non-impervious cover. The earlier the
pixel changes from non-impervious to impervious surface, the more
likely the original CCDC algorithm would detect a reversed conversion.
This also explains why lower PAs tend to occur in the categories of early
years (e.g., before 2011). The two post-classification approaches reveal
both lower PAs and lower UAs than our approach and original CCDC.
Post-classification with temporal consistency check generates higher
PAs (Fig. 11b), since the post-treatment can correct some of the omis-
sion errors. However, such post-processes as the temporal consistency
check may also raise additional commission errors, leading to lower
UAs (Fig. 11a).

The continuous-scale accuracy assessment of the impervious surface
change detection demonstrates that our predictions and the actual
change dates are overall in good agreement (Fig. 12). The majority of

Table 2
Impervious surface products used for comparison.

Product Spatial resolution (m) Epoch used Coverage Approach Source

GLC30 30 2010 Global Pixel-Object-Knowledge (POK)-based Chen et al. (2015)
FROM-GLC 30 2010, 2015 Global Pixel-based Gong et al. (2013); Yu et al. (2014)
GHS ~ 38 2014 Global Pixel-based Pesaresi et al. (2016)
CAS-NLCD 30 2005, 2010, 2015 China Visual interpretation Zhang et al. (2014)
NUACI 30 2005, 2010 Global Rule-based Liu et al. (2018b)

Table 3
Accuracy assessments for classification maps in 2002 and 2016.

Class 2002 2016

Area
(%)

PA (%) UA (%) Area
(%)

PA (%) UA (%)

Impervious 2.7 95.8 98.6 7.5 98.2 95.2
Non-impervious 97.3 98.6 95.7 92.5 95.3 98.3
Both classes OA=97.2%, Kappa= 0.943 OA=96.7%, Kappa= 0.935

Note: PA, UA and OA are producer's accuracy, user's accuracy and overall ac-
curacy, respectively.

Fig. 7. Scatter plots of impervious surface cluster numbers derived from classification maps and reference data in 2002 (a) and 2016 (b). The black line is the 1:1 line.
The red dot line is the linear fit with the intercept forced to 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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the samples have the same times of change as the reference data (i.e.,
bias= 0), with the proportions both above 70%. Grouped by the time
of change, samples with one single abrupt change have a smaller mean
bias (as well as standard deviation) than those with multiple abrupt
changes. In addition, the two sample groups exhibit opposite temporal
bias trends, and their mean biases are both within 3.5 Landsat revist
periods (56 days). Specifically, the mean biases are +0.17 and− 3.42
with respect to one single change and multiple changes. The overall
positive bias of the single change pixels can be explained by the fact
that we used the start date of the latter time series model as the tem-
poral boundary. As a consequence, the initial stage of change with
partial impervious covers may be identified as the “disturbed” period
(Zhu and Woodcock, 2014). Pixels with multiple changes, on the other
hand, generally displayed a negative error trend, which may partially
be due to that some false changes (e.g., conversion from forest to bright
bare soil) are incorrectly identified as the “true changes”.

Fig. 13 further shows two zoomed-in regions of the generated im-
pervious surface maps, compared with the corresponding Google Earth
VHR imagery, at three time points for visual evaluation. In the old
town, impervious surface covers appeared steady during 2006–2015.
Since this region has a railway hub characterized by massive infra-
structures, available lands for impervious surface expansion was rather
limited. On the contrary, a significant amount of increased impervious
cover is observed in the new town district. From 2008-03-27 to 2010-
09-20, the growing rate of impervious surface areas was slow, with
most new impervious covers concentrated in the northern parts. After
2010, the policy of “new urban area construction” was put into prac-
tice, incurring the emergence of various new types of imperviousness,
such as buildings, traffic pavements and industrial plants.

4.3. Continuous impervious surface dynamics during the study period

Figs. 14 and 15 show the continuous impervious surface dynamics
in the spatial and temporal domain, respectively. In Fig. 14, blue tones
in the modeled pixels are assigned to early impervious surface expan-
sion while yellow and red tones indicate later emergence of im-
perviousness. The gray color within the study area indicates the original
impervious extent in the year 2002. The early wave of urban con-
struction boom before 2005 was commonly observed in the adjacent
areas of existing settlements, and most of them were in relatively small
sizes. An exception is in the eastern part of Nanchang County, which
was designated as a university town by the local government prior to
2000. In effect, impervious surfaces in this region expanded earlier.
After 2013, the study area experienced another period of rapid im-
pervious expansion, with most of the increase occurring in the southern
parts, especially Xinjian District and Nanchang County.

Fig. 15 shows the temporal trajectory of impervious surface ex-
pansion in Nanchang. Overall, the original and error-adjusted area es-
timations are similar throughout the entire study period. Temporally,
we observe accelerated expansion rates of impervious surface, with
relatively high rates before 2005 and after 2012. The rates are in ac-
cordance with the annual nighttime light dynamic time series, re-
flecting actual infrastructure construction activities in Nanchang. At the
quarterly scale, the analysis also captures intra-annual variations where
the second half of the year has more impervious surface expansion areas
than the first half, which reflects the construction activities in reality
(Zhang et al., 2017).

4.4. Comparison with other existing products

Table 4 provides the statistics of impervious surface areas using our
error-adjusted estimations and other five existing products. It should be
noted that none of these reference products can be considered as
ground truth. Alternatively, the inter-comparison offers an insight of
agreement level between our data outputs and other products in the
study area. Overall, there are considerable variations among the
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different datasets, and our outputs are in the medium level. Moreover,
all products, except for GHS, reveal a consistent increase across the
available epochs, reflecting a general trend of impervious surface ex-
pansion in Nanchang. An interesting finding is that the total impervious

surface areas of the three pixel-based estimates (GHS, FROM-GLC and
our outputs) are constantly smaller than those of the other three pro-
ducts. For example, in 2010 when most products were available, only
CAS-NLCD, NUACI and GLC30 reached 450 km2. The greatest dis-
crepancy occurred in 2005 when the total impervious surface areas of
CAS-NLCD and NUACI nearly doubled our estimate. Although only one
year (2014) can be compared, GHS is found to have a similar estimate
to this study, with impervious surface areas of 514.04 km2 and
485.73±4.43 km2, respectively. FROM-GLC, on the contrary, con-
stantly displays the lowest estimate in the available years (i.e., 2010
and 2015).

Fig. 16 shows the comparison of impervious surface maps in the
study area in 2010. Compared to the false color composite Landsat
image, footprints from all estimates reasonably agree with each other,
although differences are substantial in some areas. Specifically, there is
a good agreement in highly urbanized regions, but CAS-NLCD and
NUACI generally estimate larger patch sizes than other datasets. In
addition, only GLC30, FROM-GLC and our outputs capture the spatial
pattern of highway network to some degree. The greatest differences in
magnitude are found in rural regions where the two pixel-based pre-
dictions (this study and FROM-GLC) yield greater numbers of small-
scale impervious surface clusters.

Fig. 17 further compares different datasets for the year of 2010 by
selecting three 18× 18 km regions, each of which represents one

Fig. 9. Key outputs from CCD for change detection. (a) CCD start date, (b) CCD end date, (c) number of abrupt changes, (d) percentages of different abrupt change
numbers.

Fig. 10. Relative frequency of the index K (in the logarithmic form). Kimp and
Knon indicate the mean values of impervious and non-impervious covers.
Adjusted t-test (for unequal variance) is used to test the difference in means.
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typical landscape. All the products show similar patterns in the urban
core region where nearly half of the areas are covered by impervious
surfaces. These datasets correctly capture most impervious surface
areas except those in the islands located within Ganjiang river (upper
middle the urban core subset). Compared to other datasets, FROM-GLC
and our outputs exhibit weaker imperviousness in the eastern and
southern parts of Nanchang. In the sub-urban region, major impervious
clusters are detected by all estimates, but their patterns substantially
vary. In NUACI, almost all impervious clusters are connected, leaving
the remaining areas identified as natural lands. This highly con-
centrated distribution, however, is not observed in other products.
Again, the impervious surface extent in FROM-GLC is similar to our
estimate, especially in the southern parts dominated by sparse built-ups
and traffic pavements. However, FROM-GLC is not able to detect set-
tlements in the northwestern corner and some parts of Changbei In-
ternational Airport in the center, both of which are identified by our
outputs, GLC30 and CAS-NLCD. In the countryside region, the overall
picture of the impervious surface distribution is quite heterogeneous
among the different datasets. Not surprisingly, the impervious surface
extent of NUACI is still smaller than the other products. Our dataset is
similar to FROM-GLC in terms of the overall impervious surface dis-
tribution and magnitude. GLC30 and CAS-NLCD, on the other hand,
show greater imperviousness estimates than the other products.

5. Discussion

5.1. Spatial-temporal rules for continuous impervious surface dynamics

Tracking human-dominated or -induced land cover and land use
dynamics is of critical importance to understanding the global processes
(Kareiva et al., 2007; Prestele et al., 2016; Zhang et al., 2018b). Unlike
the other land cover changes, the transition from natural lands to im-
pervious cover follows certain spatial-temporal rules, which can facil-
itate change detection analysis. In this study, we incorporate these rules
in extracting impervious surface dynamics and obtain comparably sa-
tisfactory results. Our approach offers a new perspective for tracking
continuous impervious surface change in a timely and cost-effective
manner.

In the spatial domain, the stable area masking procedure greatly
improves computing efficiency. According to our results,< 5% of the
study area has experienced impervious surface expansion during
2002–2016 (Table 3), meaning that over 95% of processing workload
has been saved. Masking out irrelevant regions also effectively alle-
viates classification errors incurred by cloud cover, ETM+ SLC-off
problem, and data missing (Deng et al., 2017). These errors could be
propagated in post-classification approaches, reducing change detec-
tion accuracy.

Fig. 11. Performances of annual-scale impervious surface change detection using different approaches based on the 15 classes described in Table 1. (a) User's
accuracy, (b) producer's accuracy, and (c) overall accuracy. Post-1 and Post-2 represent post-classification approaches without and with temporal consistency check,
respectively.
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In the temporal domain, the irreversibility of impervious surface
expansion has been widely recognized and applied to refine impervious
surface dynamic monitoring results (Gao et al., 2012; Schneider and
Mertes, 2014; Shao and Liu, 2014). Most previous studies usually
adopted temporal consistency check to correct unreasonable land cover
changes (Li et al., 2015; Zhang and Weng, 2016; Zhang et al., 2017;
Zhang et al., 2018c), which nevertheless inevitably introduces further
estimate biases, as demonstrated by our results in Fig. 11a, b. Our ap-
proach directly leverages the rule of irreversibility so that the change
detection analysis can focus only on finding the time point of change
from non-impervious to impervious surface.

5.2. Continuous change detection using dense Landsat time series stacks

Landsat has a unique place in the pantheon of satellite-based global
land observing systems because of its long data archive history, fine
spatial resolution and open-access policy (Woodcock et al., 2008;
Wulder et al., 2016; Wulder et al., 2019; Zhu et al., 2019a). These
advantages have promoted the applications of automatic and robust
algorithms, with which more frequent Landsat time series can be han-
dled (Huang et al., 2010; Kennedy et al., 2010; Verbesselt et al., 2012;
Zhu, 2017; Wulder et al., 2018). In this study, we adopt the CCD al-
gorithm for impervious surface change detection using dense data
stacks from Landsat 5, 7, and 8. This algorithm is found to be beneficial
in revealing information that has been hindered by insufficient data
frequency. For example, our study has observed intra-annual variations
of impervious surface expansion (Fig. 15).

In the present study, we integrate the irreversibility of impervious
surface expansion into the CCD algorithm. First, CCD detects persistent
pixels misclassified in the spatial masking procedure, and thus corrects

classification errors to some extent (Fig. 5b). Second, for pixels with
multiple changes, we improve CCD by using the false alarm exclusion
procedure, which efficiently captures the time point of imperviousness
emergence. This integration shows the potential of generating more
reliable change detection results than the original CCDC algorithm
(Fig. 11).

5.3. Comparison with existing products

The derived impervious surface maps in this study are comparable
to the reference datasets, most of which are estimated using more
complex algorithms (e.g., GHS and NUACI) or involving manual in-
tervention (e.g., CAS-NLCD). Our estimates share more spatial simi-
larity with other datasets in highly urbanized regions than in peri-urban
and rural areas where heterogeneous landscapes dominate, in ac-
cordance to Qin et al. (2017). Such a discrepancy can be due to the
difference of the mapping algorithms and input data. GLC30 and CAS-
NLCD are generated or partially assisted by visual interpretation, thus
settlements in small sizes (e.g., villages) may be easily neglected.
NUACI, on the other hand, is a rule-based product derived from Landsat
imagery and DMSP-OLS nighttime lights. As a consequence, some im-
pervious surfaces with low nightlight brightness could be incorrectly
masked out (Zheng et al., 2017; Liu et al., 2018b). Within the urban
core of Nanchang, river islands receive special attention because of the
seasonality of inundations. Based on our knowledge, none of the five
maps (Fig. 17) perfectly captures the ground truth of imperviousness in
the river islands, indicating the impact of seasonal water occurrence on
impervious surface mapping or change detection.

Another issue that may cause the difference is the inconsistency of
the land cover classification scheme. For example, in GLC30, there is no

Fig. 12. Continuous-scale performance of impervious surface change detection. All temporal bias statistics are re-scaled in accordance to the temporal resolution of
Landsat revisit period of 16 days.
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impervious surface class, thus we used the class of artificial surface as
an alternative. This land cover type, however, contains non-impervious
surfaces such as the urban green space (Chen et al., 2015). Therefore, a
thorough evaluation of our mapping performance requires more es-
tablished land cover products in which the class of impervious surface is
included.

Due to the long temporal interval, current fine-resolution im-
pervious surface (or analogous land cover type) products can capture
some, but not all, of the imperviousness dynamics during urbanization.
Our approach renders a new possibility to fill this gap. The independent
classification of the two baseline years (see Section 3.1) can be replaced
by the corresponding layers derived from existing datasets. Then, the
stable area masking and continuous change detection can be im-
plemented in sequence. The integration of existing products and our
approach brings the following benefits. First, no additional data or
manual intervention is required, so the product consistency can be met.
More importantly, by generating more frequent impervious surface
extent maps at the annual or even intra-annual scales, we are able to
provide more nuanced insights for monitoring impervious surface dy-
namics that are not represented by estimates of existing products.

5.4. Uncertainties and limitations

Although accuracy assessments show good performance of the

present approach, our approach has limitations and uncertainties. The
classification errors of the start and end years can induce uncertainties
in the stable area mask. In this study, reference samples for modeling
and validation are not strictly ground truth data, but rather extracted
from satellite images via manual interpretation. This process contains
errors, which may be propagated into the final outputs (Foody et al.,
2016). The CCD algorithm depends heavily on high frequency of clear
observations. Hence, its application may be limited in places with un-
favorable weather conditions or extreme seasonal imbalance of clear
observations. Since a “change target” method focuses only on im-
pervious surfaces, the present approach cannot reveal the cause of
change (i.e., change agent), which is equally important in under-
standing urban system dynamics (Kennedy et al., 2015). The hetero-
geneous nature of urban landscapes gives rise to the common presence
of mixed pixels that can lead to a decreased change detection accuracy
due to the spectral signature interference from other land cover types.
Therefore, further studies may focus on sub-pixel level implementation
of monitoring continuous impervious surface dynamics.

6. Conclusions

Accurately monitoring impervious surface dynamics is of great im-
portance far beyond the city limit. In this study, we develop an ap-
proach for continuous impervious surface change estimation with the

Fig. 13. Illustration of comparing the generated impervious surface maps and corresponding Google Earth VHR images at given time points.
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use of the spatial-temporal rules and dense time series stacks of Landsat
data. Experimental results in Nanchang, China, reveal the effectiveness
and efficiency of this approach. Three major conclusions are summar-
ized. First, by applying classification in the start and end years, stable
areas characterized by temporally persistent land covers or irrelevant

land cover changes can be spatially excluded, saving unnecessary
computing workload. Second, based on the temporal irreversibility rule
and the CCD algorithm, continuous change detection can be achieved
on the per-pixel level by finding the corresponding breaks (i.e., change
time points) through time series models using Landsat dense time

Fig. 14. Spatial distribution of the dates of impervious surface emergence. The gray color represents the impervious surface extent at the initial stage (the year of
2002).

Fig. 15. Temporal trajectory of new impervious surface
areas. The dotted line represents error-adjusted im-
pervious surface expansion areas with uncertainties (95%
confidence interval) at the annual scale. Q1, Q2, Q3 and
Q4 represent the periods of January–March, April–June,
July–September, and October–December, respectively.
∆NTL denotes the difference of nighttime light between
one given year and its previous year.
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Table 4
Comparison of impervious surface areas among different products (unit in km2).

Year GLC30 GHS CAS-NLCD FROM-GLC NUACI This study

2005 517.19 517.87 276.83± 5.30
2010 473.38 537.62 334.43 571.44 375.31± 5.72
2014 514.04 485.73± 4.43
2015 621.26 524.62 524.89± 3.93

Fig. 16. Spatial comparison of impervious surface maps in 2010. SWIR2, NIR, and RED are displayed in as red, green and blue layers for the Landsat image. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Impervious surface mapping results of three typical regions in 2010. SWIR2, NIR, and RED are displayed in as red, green and blue layers for the Landsat
image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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series. Thus, an impervious surface extent map at any given time during
the study period can be generated. Finally, compared to the traditional
impervious surface change monitoring methods, the present approach
not only provides convincing and more frequent estimates, but also has
the flexibility to be integrated into the existing products for further
utilization at the varying spatial and temporal scales.
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Appendix A

A.1. Post-classification without temporal consistency check (Post-1 approach)

We implemented the Post-1 approach through directly performing annual classifications from 2002 to 2016. For the years 2002 and 2016, we
directly used our classification results. For the remaining years, the same methodology provided in Sections 3.1.1 and 3.1.2 (including seasonal
image compositing, feature extraction, land cover class scheme and classifier parameterization) was used to generate their classification results.
Considering the classification consistence in different years, we adopted a “backdating” procedure (Xu et al., 2018) for multi-year training sample
collection. We treated the training sample set of 2016 as the baseline due to the availability of adequate VHR imagery. Then, we checked these
samples in the previous year (i.e., 2015) to identify whether the land cover types have changed. For samples with changed land cover, we re-assigned
their class labels in that year. This step was repeated until 2003. To ensure the reliability, we removed the samples that were difficult to interpret,
resulting in different sample size for each year during 2002–2016 (Table A1). Note that the initial output of annual classification was a six-category
(impervious surface, bareland, cropland, forest, wetland and water) land cover map. Thus, a re-classification procedure was conducted to re-group
six land covers into impervious surface and non-impervious surface.

A.2. Post-classification with temporal consistency check (Post-2 approach)

Based on the annual classification results from Section A.1, the Post-2 approach utilized a temporal consistency check (Li et al., 2015) to improve
impervious surface sequence consistency. Specifically, the temporal consistency check includes two steps, described as follows.

Step 1 is iteratively temporal filtering. Given original annual classification sequence Y={Y1, Y2, …, Yn}, a temporal consistency probability for
each year Yi can be calculated as:
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where Pi is the temporal consistency probability, Con() denotes a discriminant function returning 1 (Yi= Yj) or 0 (Yi≠ Yj), r is the length of temporal
window, which was initially set to 1 (Li et al., 2015). Then we used the acquired temporal consistency probability sequence P={P2, …, Pn-1} to
refine Y, written as:
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where Zi is the refined annual classification result, opposite denotes the initial class label should be changed to its opposite, so Y (except the start and
the end years) can be updated to Z={Y1, Z2, …, Zn-1, Yn}. The above procedure was conducted repeatedly with a gradually increasing r until Pi for
all years are> 0.5.

Step 2 is logistic reasoning. While the temporal filtering can reduce spurious changes in the temporal domain, unreasonable results (i.e., those
against the unidirectionally of impervious surface change) may still exist. In addition, the initial classification results within the start and end years
cannot be updated by the iteratively temporal filtering due to the lack of temporal contexts. Therefore, a logistic reasoning was further implemented.
First, a temporal segmentation was applied according to the final temporal window length, resulting in three periods named as Seg-head, Seg-body
and Seg-tail, respectively. Then a temporal majority voting method was applied to Seg-body for identifying whether it is impervious surface
dominated (i.e., impervious surface years are more than non-impervious years) or not. In the case of dominated impervious surface, we chose the
first impervious year as the turning point. Otherwise, the turning point was identified as the last non-impervious year. We modified Seg-body as non-
impervious prior to the turning point and as impervious surface after the turning point. Finally, based on the modified Seg-body, similar reasoning
processes were applied to the whole sequence.

A.3. The original CCDC algorithm

We implemented the original CCDC algorithm using the Python codes provided by the U.S. Geological Survey (https://github.com/USGS-EROS/
lcmap-pyclass). The time series model coefficients and Root Mean Square Errors (RMSE) from all seven Landsat bands (green, blue, red, NIR, SWIR1,
SWIR2 and thermal) were used as input features for classification (Zhu et al., 2015). We used the training samples acquired in 2002 and 2016 to
parameterize the RFC and predict land cover classes. Since the classification result generated from original CCDC is continuous, we selected the same
fixed date of the year as that in the main text (December 31st) to produce the annual classification sequence.
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Table A1
Training sample sizes for the two post-classification approaches during 2002–2016.

Class Bareland Cropland Forest Impervious Water Wetland Total

2002 64 1527 832 220 151 137 2931
2003 61 1525 832 227 137 136 2918
2004 70 1523 832 243 136 136 2940
2005 68 1520 832 274 136 136 2966
2006 67 1515 829 283 136 136 2966
2007 79 1513 829 285 136 136 2978
2008 87 1511 829 307 136 136 3006
2009 84 1510 829 323 136 136 3018
2010 82 1507 829 327 136 136 3017
2011 84 1507 829 335 136 136 3027
2012 93 1509 832 334 136 136 3040
2013 88 1509 832 342 136 136 3043
2014 88 1508 874 351 136 136 3093
2015 86 1500 879 350 136 136 3087
2016 87 1497 837 340 222 136 3119
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