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• Impact of forest fire on ecosystem pro-
ductivity and greenhouse gas emission
is evaluated.

• Two ecosystem models have been uti-
lized to assess the impact of forest fire
on NPP.

• A new approach delta indices/delta NPP
is proposed to delineate burn scars effi-
ciently.

• The burn indices can precisely predict
forest fires and associated GHG emis-
sions.

• Forest fires have significant impact on
greenhouse gas emission and ecosystem
production.
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Remote sensing techniques are effectively used for measuring the overall loss of terrestrial ecosystem productiv-
ity and biodiversity due to forest fires. The current research focuses on assessing the impacts of forestfires on ter-
restrial ecosystem productivity in India during 2003–2017. Spatiotemporal changes of satellite remote sensing
derived burn indices were estimated for both fire and normal years to analyze the association between forest
fires and ecosystem productivity. Two Light Use Efficiency (LUE) models were used to quantify the terrestrial
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Net Primary Productivity (NPP) of the forest ecosystem using the open-source and freely available remotely
sensed data. A novel approach (delta NPP/delta burn indices) is developed to quantify the effects of forest fires
on terrestrial carbon emission and ecosystem production. During 2003–2017, the forest fire intensity was
found to be very high (N2000) across the eastern Himalayan hilly region, which ismostly covered by dense forest
and thereby highly susceptible to wildfires. Scattered patches of intense forest fires were also detected in the
lower Himalayan and central Indian states. The spatial correlation between the burn indices and NPP were
mainly negative (−0.01 to −0.89) for the fire-prone states as compared to the other neighbouring regions. Ad-
ditionally, the linear approximation between the burn indices and NPP showed a positive relation (0.01 to 0.63),
suggesting amoderate to high impact of the forestfires on the ecosystemproduction and terrestrial carbon emis-
sion. The present approach has the potential to quantify the loss of ecosystem productivity due to forest fires.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

According to the Intergovernmental Panel on Climate Change (IPCC,
2006; IPCC, 2014), forest degradation and associated biomass burning
could be, in part, be responsible for the increases of greenhouse gas
(GHG) into the atmosphere. The IPCC report (2014) has estimated
that the annual GHG emissions caused by agricultural production
were 5.0–5.8 GtCO2eq/yr during 2000–2010, while the annual global
GHG emissions due to land use land cover (LULC) changes were
accounted as 4.3–5.5 GtCO2eq/yr. Also, GHGflux caused by LULC change
and forest degradation can lead to substantial changes in atmospheric
chemistry in the long run (Smith et al., 2014).

Forest fire is one of the primary causative natural drivers of biodiver-
sity loss (Pérez-Cabello et al., 2012), depletion of terrestrial ecosystem
productivity and exhaustion of forest carbon stocks (Amiro et al.,
2000; Amiro et al., 2001), decline in soil fertility and subsequent crop
production (Cerdà, 1998), escalation of air pollutants (Bae et al., 2019;
Yin et al., 2019), water quantity and quality (Venkatesh et al., 2020),
and increase in the magnitude of landslide susceptibility (Jaboyedoff
et al., 2018). These unfavourable consequences incurred by forest fires
often take place over large areas and sometimesmay last for years or de-
cades (Pellegrini et al., 2018; Taylor et al., 2014). Therefore, a large-scale
investigation is needed to calculate the degree of sensitivity between
forest fire burn intensity and ecosystem production (Wang and Zhang,
2020; Kirchmeier-Young et al., 2019; Zheng et al., 2016).

During 2003–2017, a total of 520,861 active forest fire events were
detected over the varying forest ecosystems in India, which are mainly
concentrated over the dense evergreen and deciduous forest in eastern
Himalayan states and lower Himalayan states (Table. S1). According to
the report of Forest Survey of India (FSI), nearly 54.40%, 7.49%, and
2.41% of the forest cover in India are exposed to occasional fires, moder-
ately frequent fires, and high incidence levels, respectively. Several
studies were carried out in various environmental and climatic set-
ups across India to demonstrate the effects of forest fires on natural eco-
system functioning. For example, Venkatesh et al. (2020) studied the
impact of forest fires on the water balance and found that due to this
forestfires and associated vegetation losses, the annual runoff increased
by 25% compared to the normal (less-fire) year, whichmade the water-
shed prone to flooding. This effect has beenwidely demonstrated also in
other areas of the world, such as southern Europe (Van Eck et al., 2016;
Cerdà et al., 2017) and the USA (Cerdà and Robichaud, 2009). Using the
Weather Research and Forecasting model coupled with chemistry
(WRF-Chem) and in-situ observations in western Himalaya, Yesobu
et al., 2020 observed sharp increases of CO, NOx, and O3 by 52%, 52%,
and 11% respectively during the high fire activity period.

This study further advances the earlier effort by proposing a novel
analysis of the effects of forestfires on ecosystemproduction and terres-
trial carbon emissions for different forest ecosystems of India using spa-
tially explicit remote sensing data products and auxiliary information.
This study evaluated the dynamics of terrestrial ecosystem productivity
and vegetation phenological patterns using open-source and freely
available remotely sensed data. This choice was made to guarantee a
wide replicability of the proposed framework. The description of the
data used in this study is given in Table. 1. This study proposed an ap-
proach (i.e., ΔNPP/Δburn indices) to quantify the effects of forest fires
on terrestrial carbon emissions and ecosystems using several indicators
[Soil Adjusted Vegetation Index (SAVI), Normalized Burn Ratio (NBR),
Normalized Difference Moisture Index (NDMI), Modified Soil Adjusted
Vegetation Index (MSAVI2), Land Surface Water Index (LSWI), and
Land Surface Temperature (LST)]. The current research also assesses
(1) the association between burn indices and NPP during normal
(2003–2017) and fire (2009) years, (2) spatiotemporal dynamics of
NPP during normal and fire years, and (3) impacts of forest fires on ter-
restrial ecosystem productivity and carbon emissions.

2. Materials and methods

2.1. Forest fires in India

Forest fires are now becoming a serious environmental concern not
only in India but in many other countries across the globe due to the
changing climate and associated local and regional warming (Taylor
and Alexander, 2018; Littell et al., 2016; Zhang-Turpeinen et al., 2020;
Vachula et al., 2020). Additionally, forest fires are now becoming a prin-
cipal cause of forest degradation in India, especially in the dry deciduous
forested region (Madhya Pradesh, Odisha, and Chhattisgarh), where the
seasonal (April/May) forest burning is a common phenomenon due to
abundant fuel load and low moisture content in soil (Chandra and
Kumar Bhardwaj, 2015). However, in the north-eastern region of
India, forest fires are mainly associated with traditional practices of
shifting cultivation (local name Jhum) (Puri et al., 2011). Satellite re-
motely sensed data is the only reliable source of forest fire assessment
in India, as comprehensive statistical data on active forest fire loss is
weak (Roy, 2003). Additionally, Roy, 2003 and Kale et al. (2017) have
asserted that about 90% of the forest fires in India are human-made,
which demonstrates the necessity of proper prevention measures and
creation of forest fire vulnerable zones for averting the ever-growing
problems of forest fires on the natural environment. The other causative
factors that could be responsible for forest fires are categorized in three
major groups: (i) natural (ii) human deliberation, and (iii) unintention-
ally/accidental human interference (Jaiswal et al., 2002).

Among the major forest types of India, the dry deciduous
broadleaved forests are found to be highly susceptible to forest fires
compared to others. This could be due to the lack of soil moisture, espe-
cially during autumn and dry pre-monsoon periods (5–6 dry months),
which is featured by a high level of surface and air temperature and
low moisture content in the air, and abundant fuel loads composed in
the substrate. The spatial distribution of MODIS active forest events
are predominantly concentrated over the central and east-central states
of India (Odisha, Chhattisgarh, and Madhya Pradesh). These regions are
mostly covered with deciduous forests and are highly susceptible to
seasonal forest fires. The Chir Pine forests distributed in the hilly Hima-
layan states are also found to be highly vulnerable to forest fires (Joseph
et al., 2009). The present study has considered all forest types of India,
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Table 1
Description of datasets used in this study.

Dataset Acquisition period Description Data source Spatial scale Temporal scale

MODIS
MOD11A1 2003–2017 LST, Emissivity NASA 1 km Daily
MOD09A1 2003–2017 Surface reflectance NASA 500 m 8 day
MOD17A2 2003–2017 GPP NASA 500 m 8 day
MOD09Q1 2003–2017 Surface reflectance NASA 230 m 8 day
MCD14DL 2003–2017 Active fire products NASA 1 km 24, 48 h and 7 days

LULC
ESA-CCI 2015 Land Use Land Cover ESA 300 m Yearly

Climate

TerraClimate 2003–2017 Monthly climatology
http://www.climatologylab.org
/terraclimate.html

~4 km Monthly
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including mosaic natural vegetation, evergreen broadleaved, deciduous
broadleaved, evergreen needleleaved, deciduous needleleaved, mixed
leaf type, tree and shrub, mosaic herbaceous cover, shrubland, grass-
land, and sparse vegetation cover, for evaluating the impact of forest
fire on overall ecosystem production and GHG emissions in India
(Fig. 1).

2.2. Methods

2.2.1. Estimation of land surface temperature (LST)
In this study, MODIS 1 km level-3 LST and emissivity product

(MOD11A1) Version 6 obtained from the USGS1 were used to estimate
monthly and annual average LST for normal (2003–2017) and fire
(2009) years, respectively (Table 1). Google Earth Engine (GEE)
(Gorelick et al., 2017) was utilized in this study as a cloud computing
platform to calculate monthly and annual LST values for the entire
study period. At first, the weekly LST was estimated using the thermal
bands of the data products. The monthly LST values were then aggre-
gated to estimate annual average LST for each reference year. The qual-
ity of the pixels was tested through the quality assurance information
associated with the data.

2.2.2. Estimation of burn indices
The level 3 (500 m gridded, 8-days) with 1–7 spectral band surface

reflectance products (MOD09A1)2 Version 6 were used to derive the
burn indices for the forest fire disturbance analysis (Arnett et al.,
2015). A defined scale factor equal to 0.0001 for bands 1–7 was used
to retrieve the actual pixel information. A total of six burn indices, in-
cluding SAVI, NBR, NDMI, MSAVI2, LSWI, and LST, were considered in
this study formapping burn scars in normal andfire years. Computation
of these burn indices was done in the GEE. The selected burn indicators
were extracted using expressions provided in Appendix A.

2.2.3. Quantification of net primary productivity (NPP) and carbon
emission

In order to have reliable estimates of NPP (unit: gCm−2 year−1), two
different ecosystem models were used in the current research. Neces-
sary information corresponding to the selected models for NPP estima-
tion is described as follows, whereas the mathematical concept is
provided in Appendix A.

2.2.3.1. Vegetation Photosynthesis Model (VPM). The VPM (Xiao et al.,
2004) is based on the conceptual partitioning of non-photosynthetic
vegetation (NPV; mostly senescent foliage, branches, and stems) and
photosynthetic vegetation (PAV; mostly chloroplast) within the leaf
1 Website: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/
mod11a1_v006

2 Link: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/
mod09a1_v006
and canopy. This model is driven by temperature stress scalar, moisture
stress scalar, and age of phenology, respectively (Appendix A).

2.2.3.2. Carnegie-Ames-Stanford Approach (CASA). The CASA model
(Potter et al., 1993)was used to estimate terrestrial NPP by utilizing sat-
ellite imagery information and climatic measurement across various
eco-regions. The net photosynthetic radiation (PAR; unit: MJ
m−2 year−1), biophysical dynamics (NDVI), and different climatic and
environmental stress regulators control the NPP of a biome (Ts1, Ts2,
Ws) (Potter et al., 1993) (Appendix A).

2.2.4. Quantification of greenhouse gas emissions
The spatiotemporal emissions of themajor greenhouse components

(C, CO2, CH4, N2O, NOx, and particulate matter) were estimated through
NPP. NPP assesses the environmental impact of forest fires and associ-
ated loss of natural resources in a highly enriched ecosystem.

2.2.4.1. Release of carbon. The IPCC guidelines for national greenhouse in-
ventories (IPCC, 1997; 2006) were followed when calculating GHG
emissions under forest fires, as given below:

C ¼ ΔBiomass� 0:9� 0:45 ð1Þ

where, C (g C) is the amount of carbon released due to forest fires;
ΔBiomass is the change in biomass between normal and fire years; the
value of 0.9 represents the fraction of biomass oxidized on site and the
value of 0.45 represents the actual carbon content (IPCC, 2006; Yan
et al., 2009; Meinshausen et al., 2009).

The amounts of gaseous carbon (gCO2, CH4, CO) compound emis-
sions were retrieved as follows:

E j ¼ ε j � δ j � C ð2Þ

where, εj is the fraction of the total carbon emitted as compound j, and δj
is the fraction of the passage from the emission of carbons to the emis-
sion of the specific compound. The εj and δj value sets for CO2, CH4, CO
are considered as 0.888, 0.012, 0.1 and 3.67, 1.33, 2.33, respectively
(IPCC, 1997; 2006; Yan et al., 2009; Meinshausen et al., 2009).

2.2.4.2. Release of nitrogen compounds. Emissions of nitrogen compounds
(g NO2, NOx) were quantified as follows:

N ¼ γ�C ð3Þ

E j ¼ ε j � δ j � N ð4Þ

where, γ ∗ is the proportion of emitted Carbon and Nitrogen, the value
sets for the coefficients εj and δj for NO2 and NOx are specified as
0.007, 0.012 and 1.57, 2.14, respectively (IPCC, 1997; 2006; Yan et al.,
2009; Meinshausen et al., 2009).

http://www.climatologylab.org
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11a1_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11a1_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09a1_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09a1_v006


Fig. 1. Location of the study area (a)World boundary, (b) Asian subcontinent, (c) Major forest types of India, and (d) Forest fire locations in 2009.
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2.2.5. Experimental design
This study explicitly focused on the fire impacts on ecosystem pro-

duction and carbon emissions in India. The European Space Agency Cli-
mate Change Initiative (ESA-CCI) 300 m spatial explicit LULC data for
2015 was utilized to segregate different forest cover types from the
other land cover classes. A total of 11 forest cover classes, includingmo-
saic natural vegetation, evergreen broadleaved, deciduous broadleaved,
evergreen needleleaved, deciduous needleleaved, mixed leaf type, mo-
saic tree and shrub, mosaic herbaceous cover, shrubland, grassland,
and sparse vegetation covers, were taken into account for depicting
the spatial extent of forest cover across the country. The required cli-
mate variables were collected from TerraClimate (Abatzoglou et al.,
2018). The recode and subsequent categorization of forest covers were
performed in ArcGIS 10.7. Subsequently, the active forest fire events
over the forest ecosystems were identified from MODIS active forest
fire products. 15 years (2003–2017) of forest fire data were collected
to examine the temporal-spatial characteristics of forest fire events in
India and its historical trends over the period. During 2003–2017, a
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total of 520,861 active forest fire events were recorded across the forest
ecosystems in India. Additionally, the maximum number of forest fire
events was recorded in 2009 (50,753), followed by 2012 (45,083),
2010 (39,455), and 2007 (37,424). The minimum fire events were re-
corded in 2015 (26,694). Given the estimates of annual forestfire events
in each reference year, the year 2009 was chosen as “forest fire year,”
and the remaining years (2003–2017) were considered as “normal”
years (forest fires not as frequently occurred as in 2009 reference year).

The final NPP output was used in the current study to evaluate the
rates of change in NPP, corresponding to a particular index (Eqs. (5)–
(11)). They were used to identify the sensitivity between NPP and the
selected burn indices, thereby making them understandable to the
readers. All the required input variables were rescaled into a uniform
spatial resolution using bilinear interpolation method for the subse-
quent analysis. The resampling and interpolation were performed in
ArcGIS 10.7. The linear association between the six burn indices (SAVI,
NBR, NDMI, MSAVI2, LSWI, and LST) and NPP were evaluated using
the 2d kernel density analysis, performed in Spyder (an IDE for python
scripting). The forest fire intensity (FFI) in fire and normal years were
computed using kernel and point density tools available in ArcGIS
10.7. Later, the spatial correlation between the response (NPP) and ex-
planatory variables (burn indices) was carried out to assess the spatial
interaction between forest burning and changes in NPP. A higher corre-
lation means a higher association between the model parameters and
NPP, and vice versa. The ArcPy python module was used for computing
the pixel-wise correlation. Pearson correlation coefficient analysis was
performed using the PerformanceAnalytics package in the R statistical
software to analyze relationships between NPP and the selected burn
indices. Additionally, overall air quality and concentration of SO2 and
NO2 compounds in India were computed on GEE using Sentinel 5p sat-
ellite data products. A total of 43,740 sample points (the filtered active
fire locations, shown in Fig. 1) were utilized for analysis. Table 1 de-
scribes the data type, data source, spatial, and temporal extent of the
data set used in the present research.

ΔNPP ¼ NPPprefire−NPPfire ð5Þ

Δ NPP=NBRð Þ ¼ ΔNPP
ΔNBR

ð6Þ

Δ NPP=SAVIð Þ ¼ ΔNPP
ΔSAVI

ð7Þ

Δ NPP=NMDIð Þ ¼ ΔNPP
ΔNMDI

ð8Þ

Δ NPP=LSWIð Þ ¼ ΔNPP
ΔLSWI

ð9Þ

Δ NPP=LSTð Þ ¼ ΔNPP
ΔLST

ð10Þ

Δ NPP=MSAVIð Þ ¼ ΔNPP
ΔMSAVI

ð11Þ

where,ΔNPP is theNPP (gCm−2 month−1) difference between the nor-
mal and fire years. Subsequently, the spatial coherence of the two eco-
system models (CASA & VPM) and sensitivity between burn indices
and NPP were evaluated using standard model validation technique
(Ma et al., 2014).

R2 ¼ 1−
P

xi−yið Þ2
P

yi2−
yi

2

N

ð12Þ

where, R2 is the coefficient of determination, x and y are explanatory
and response variables of the ith month, respectively,Nis the total num-
ber of samples.
3. Results

3.1. Associations between forest fire intensity, burn indices and ecosystem
production

Fig. 2 shows spatial distribution of the FFI in fire (2009) and normal
(2003–2017) years. In both the fire and normal years, FFI is found to be
very high in the eastern Himalayan region (Assam, Meghalaya, Mani-
pur, Nagaland, Arunachal Pradesh), central dry region (Madhya
Pradesh, Odisha, Chattisgarh), and lower Himalayan region (Himachal
Pradesh, Uttarakhand). These regions are predominantly covered with
dense deciduous forests and thereby highly prone to wildfires. Addi-
tionally, the high distribution of forest fires is also perfectly corrobo-
rated with the existence of active forest fire events detected over the
forested ecosystem during the study period.

The relationships between theburn indices andNPP are evaluated so
that the ecosystem's productivity can be linked to these burn indices
(Fig. 3). Fig. 3 depicts spatial association and sensitivity between the
burn indices and NPP during the study period (2003–2017). Among
all the burn indices, high spatial coherences are observed between
SAVI and NPP (Fig. 3f), NBR and NPP (Fig. 3d), NMDI, and NPP
(Fig. 3e), and LST and NPP (Fig. 3a). Among the model pairs, the associ-
ation between LST and NPP is found negative (r between −0.33 and –
0.66), whereas the rest of the model pairs produced positive associa-
tions with NPP. Considering the spatial nature of the correlation esti-
mates, all the burn indices exhibit moderate to strong negative
associations with NPP over the regions occupied by deciduous forest,
thusmaking these regions highly susceptible to recurring forest burning
(Figs. 3, S1, S2, S3, S4, S5).

The linear associations between selected burn indices andNPP of the
fire year are analyzed for two ecosystemmodels, CASA andVPM(Fig. 4).
For the CASAmodel, all of the burn indices, except LST, are positively as-
sociated with NPP. Among the six indices, the highest coefficient of de-
termination value is estimated for LSWI (=0.63), NDMI (=0.63), and
NBR (=0.63), followed by MSAVI2 (R2 = 0.58), SAVI (=0.58), and
LST (=0.27) (Fig. 4). For VPMmodel, the highest coefficient of determi-
nation values are accounted for MSAVI2 (=0.45), SAVI (=0.44), NBR
(=0.33), LSWI (=0.32), NDMI (=0.32), respectively (Fig. 4). Addition-
ally, a trivial association is found between LST and VPM NPP (=0.001).
The mean values of the burn indices and NPP are found significantly
lower than that of the average year (Table. 2),which suggests a substan-
tial impact of forest fire on vegetation health, soil moisture, and surface
warming.

The correlation matrix among the burn indices and NPP exhibits
synergic and trade-off interactions between forest burning and degra-
dation of ecosystem productivity (Fig. 5). The statistical significance of
the parameter estimates at three probability levels exhibits the state
of coordination between forest fire led biodiversity degradation and re-
sultant trade-offs on essential regulatory and supporting ecosystem ser-
vices, including carbon sequestration and GHG regulation, which are
considered and evaluated in this research. In addition, the spatial nature
and association between the burn indices and NPP are computedwith a
ΔIndex/ΔNPP approach (Figs. S4, S5, S6, S7). Higher ΔIndex/ΔNPP
values exhibit closer spatial linkages between the response and control
variables. High ΔIndex/ΔNPP values are mostly concentrated over the
regions with high FFI (Fig. S7). This highlights the usefulness of the sat-
ellite burn indices in explaining spatially explicit categorization of forest
fire vulnerable zones.

3.2. Impact of forest fire on carbon sequestration and GHG emissions

The carbon emission and sequestration are quantified for each state
of India using the output of NPP (Fig. 6). The emission and sequestration
of carbon compounds are closely linked with the distribution of active
fire events and vegetation types. Very high to high carbon emissions
were found in the eastern Himalayan states, western desert region,



Fig. 2. (a, b) Forest Fire Intensity (FFI) estimated using point and kernel density (a) for 2009 and (b) for entire study period (2003–2017).
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and lower Himalayan region. The high rate of gaseous carbon emission
due to forest fires and associatedmortalities thus poses a potentially se-
rious threat to the forest communities of the country.

The discharge of nitrogen and other GHG compounds follows a sim-
ilar trend as carbon in the mentioned states (Figs. S8, S9; Table. S2).
Among the 33 administrative regions, the maximum total emissions of
carbon and nitrogen compounds are observed in Odisha, Rajasthan,
Chattisgarh, Andhra Pradesh, Madhya Pradesh, Telengana, and
Uttarakhand states, accounting for high biomass and resulted in forest
cover loss due to large number forest fire events in 2009. In contrast,
only two states/central territories act as the sequester of greenhouse
compounds.

4. Discussion

4.1. Associations between geographical factors, climate change, and forest
fire events

In the tropical climate zones, forest fires usually occur during the
prolonged dry summer, when the mean atmospheric temperature
often exceeds the normal level. A detailed LULC map with actual forest
fire locations and estimated forest fire intensities of different districts
in India suggest that all of the high fire intensity zones are predomi-
nantly situated in the deciduous forest region (Fig. 1). Conversely, in
the lower Himalayan and eastern Himalayan hilly regions, the occur-
rence of high fire intensity at the low altitude (≤1500 m above MSL)
can be attributed to plant species (e.g., Pinus roxburghii, Quercus
leucotrichophora), and proximity to the villages that make these areas
susceptible to anthropogenic interferences (e.g., clearance of forest
cover, stimulating grazing intensity, dispersing plant communities and
dismantling plant functional traits, changing ignition patterns, etc.)
(Bowman et al., 2011; Balch et al., 2017; Sharma et al., 2017; Kumar
and Ram, 2005). Moreover, the high inflammability of the igniting ma-
terial of the Pine forest depends on low moisture content, and the high
ambient temperature has increased the dryness of fuel loads lying on
forested strand promoting high-density forest fires in the summertime
(Sharma et al., 2011). Abundance of dry leaves in forest strand and
windward face of the surface topography could be a plausible reason
for gaining a relatively higher proportion of available surface energy to
trigger the acute forest fires in the hilly forested region in India.

There are several factors responsible for rising surface and air tem-
peratures in the study region. Theweather record of the last century re-
veals a sharp increase in average andmaximumair temperature in India
(Srivastava et al., 2017; Ross et al., 2018). This has enhanced the mois-
ture deficit conditions in the forested region in the early summer (Jha
et al., 2016; Sharma et al., 2017). The observations in the last 20 years
by Joseph et al. (2009) show that the increasing intensity and spread
of forest fires in Asian countries were largely related to rises in temper-
ature and declines in precipitation in combination with increasing in-
tensity of land uses. The weak Westerlies (contributed substantially to
the total annual rainfall in lowerHimalayan andwestern region) and as-
sociated below-average winter precipitation is also responsible for ca-
tastrophe fire event that occurred in 2016 in Uttarakhand (Sati and
Juyal, 2016). The late monsoon precipitation is of utmost crucial impor-
tance for sustaining soil moisture and preventing fire intensities, espe-
cially in summer times (Jha et al., 2016; Sati and Juyal, 2016).
Additionally, the lower Himalayan foothill forested regions are
experiencing increased unusual winter forest fire incidents. These
might indicate the acute dryness of litter and biomass of the forested
strand, which acts as the fuel of forest burns and accelerates the spread
of forest ignition (Sati and Juyal, 2016). Considering the causal factors of
forest fire in theWestern Ghats region, it was found that most of the big
fire events in this region were associated with anomalies of monsoon.
When the climatic conditions were homogenous, vegetation cover
would become a crucial factor for detecting the forest fire (Renard
et al., 2012). The climate coupled with slope and gradient of landscape
could influence the spreading of fumes, as the slope enhances the
chances of fire spreading by increasing the fire ignition (Jaiswal et al.,
2002). Apart from the natural factors, human-induced climate change
could also be an important determinator of wildfire events for not
only in India, but it is evident across the world, including Canada, UK,
USA, and many other European countries (Kirchmeier-Young et al.,
2019). Kirchmeier-Young et al. (2019) have reported that about 1.2mil-
lion Ha forest area was burned in British Columbia (Canada) due to the
extreme forest fire in 2017. Having inspected the main causes of these
unusual forest fire events, the human-induced climate change was
found to be the most critical factor (Kirchmeier-Young et al., 2019).

The present study has observed a drastic change in NPP between
the fire and normal years in India. Such changes might have resulted
from the lack of surface moisture and temperature limiting condi-
tions that prevail in this region. The extreme surface and tempera-
ture limiting conditions may have triggered the functional changes
in leaf foliage and wide-scale tree mortality (Chuvieco et al., 2004;
Bartsch et al., 2009). The phenological disturbance is mostly associ-
ated with light use efficiency and absorbed/fractional photosyn-
thetic capacity of plants (Xiao et al., 2004). It favors temperature
and moisture limiting conditions in an ecosystem that is detrimental
to ideal photosynthesis and plant respiration (Yuan et al., 2015). Ad-
ditionally, seasonality and intensity of forest fire (crown, surface,
and ground fires) have significantly controlled phenological state
and crown fuel structure, load, and moisture content of a forest by
determining the seed or vegetation reproductive capacity and
hence dismantle the native ecosystem structure and function metic-
ulously (Flannigan et al., 2000). The season factors, therefore, can



Fig. 3. Spatial correlation between the burn indices and NPP (a) LST & NPP, (b) LSWI & NPP, (c) MSAVI2 & NPP, (d) NBR & NPP, (e) NDMI & NPP, and (f) SAVI & NPP.
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connect to the availability of deciduous cover, which would regulate
the warming and cooling behavior of surface and ground fuel from
direct sunlight, especially during the summertime (Hély et al.,
2000). This could be a possible reason for the regular and recurring
fire events happening over the large portions of the Himalayan and
central dry regions in India, specifically in the states of Odisha,
Chhattisgarh, Uttarakhand, Himachal Pradesh, Manipur, Nagaland,
Mizoram, and Arunachala Pradesh. Nevertheless; it pursues special
consideration from a researcher, ecologist, environmentalist, bota-
nist, and biologist to vividly explore and investigate the fire behavior
of this region to maintain the rich ecological and natural diversity of
the Himalayan ecosystem.
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4.2. Usability of satellite remote sensing burn indices in burn area mapping
and wildfire analysis

Using the six burn indices, the association between forest fires and
ecosystem production is explored in this study. All of the driving vari-
ables have shown positive influences on ecosystem production and ter-
restrial carbon emissions. Among the burn indices, soil moisture and
vegetation-based variables are highly associated with forest burning
and associated damages, compared to the other variables. SAVI and
MSAVI2 are found more capable of explicitly defining the spatiality of
forest fire locations. This is due to the addition of soil-adjustment factor
(L) in its formula, which reduces the background attenuation from the
soil and enhances the vegetation signal in the spectrum (Huete, 1988;
Harris et al., 2011). The LST is also found as a good proxy for evaluating
and identifying the burn scars across the regions in this study. A similar
observation was made in the Iberian Peninsula, where maximizing the
surface brightness temperature is found to be the most critical criterion
for burn area delineation and mapping, instead of NDVI and other bio-
physical controls that cannot be directly used for burn scar delineation
(Chuvieco et al., 2005). Among the selected vegetation and burn indices,
SAVI, MSAVI2, and NBR are the most suitable and spatially coherent
burn indicators, as they primarily provide more rigorous feasibility of
burnt area mapping coupled with the field-based observations. Several
studies have advocated the use of ΔNBR to produce spatially explicit
burn area maps, often referred as Burn Area Reflectance Classification
(BARC) for delineating post-fire scars as it is found reasonably corre-
lated with the field-based burn scar assessment (Keeley, 2009; Roy
et al., 2006). However, several noise factors such as atmospheric con-
taminations, aerosols, bidirectional reflectance variation, and clouds
often perturb the remotely sensed post-firemeasured reflectance, mak-
ing the system insensitive to capture the post-fire changes and ulti-
mately hindering the optimal use of these burn indices for describing
physical shift of interest (Roy et al., 2006). The results exhibit a good co-
herence between the spatial and temporal distribution of the selected
burn indices and the intensity of forestfires. Therefore, the normal (pos-
itive) relation between the burn indiceswith the intensity of forest fires,
justified as the spatial agreement between the active fire locations and
the difference in burn-indices, indicates the robust feasibility and prac-
tical applicability of satellite-based observation for the active fire
distribution.

4.3. Effects of forest fires on ecosystem production, GHG emissions, and eco-
system services

Forest fires are the primary causative and natural drivers of biodiver-
sity loss, depletion of terrestrial ecosystem productivity and forest car-
bon stocks, decline of soil fertility and subsequent crop production,
escalation of air pollutants, and increase in the magnitude of landslide
susceptibility (Amiro et al., 2000; Amiro et al., 2001; Verma and
Jayakumar, 2012). In India, forest fires mainly occurred in the region
with limited connectivity, rugged topography, and lack of available re-
sources. Additionally, the majority of the population (apart from
plain) of the forestfire-prone states of LowerHimalayan andEasternHi-
malayan region solely depend on limited natural resources for fodder,
medicinal plant, timber, and others primary activities, which catalyzes
the environmental and ecological degradation of this region (Nandy
et al., 2011).

NPP was used in this study as a proxy to assess the effects of forest
fires on natural ecosystem production and terrestrial carbon emissions.
The NPP is a widely used ecosystem indicator for evaluating the carbon
sequestration capacity of the ecosystem (Li et al., 2016; Neumann and
Smith, 2018). To understand the effect of wildfires on the carbon bud-
get, the accurate measurement of fire intensity of each plant type and/
Fig. 4. The 2d density scatter plot shows the association between burn indices and carbon seque
of variation explained by the independent variable.
or biome is essential because of the volatilization and redistribution of
carbon due to active forest fires depends on type and intensity of fire
(Wang et al., 2001).

This study observed that regions with higher forest fire events have
higher NPP values and vice versa. Additionally, the changes in NPP be-
tween the fire and normal years are also found higher in the fire-
prone regions. This can be attributed to the high forest fire intensity
and associated forest cover losses due to recurring forest fire happing
in these regions. A similar observationwasmade in the boreal forest re-
gion (Canada), where themeasured CO2 flux from eddy covariance and
LUE modeled NPP showed that the forest fire had reduced the net
downward fluxes of carbon; however, it (carbon flux) has increased
10–30 years after the fire event (Peng and Apps, 1999; Amiro et al.,
2000; Amiro et al., 2003). The study by Amiro et al., 1999 on measuring
the net carbon flux over the boreal forest revealed that fire disturbance
disrupted the overall carbon cycle at the ecosystem level, and it would
need 15 to 30 years following a fire event to reach the normal photosyn-
thetic level, which appears to be a significant entity to any carbon bal-
ance model. However, several additional attributes, including the
decomposition process and heterotrophic respiration, are required for
efficient carbon budget and flux estimation. These approximations are
not covered in this research and hence could be a future scope of this
work. The mean NPP values of the high forest-fire-intensity regions
show a drastic change in the forest fire year (2009),which can be attrib-
uted to significant biomass loss and resultant forest carbon stock due to
forest fire (Gillett et al., 2004). These changes in total biomass could be
linked to post-fire mortality and associated changes, as shown by de
Vasconcelos et al. (2013) for South Western Brazilian Amazonia,
which revealed a significant loss of total and above-ground biomass
due to the increase of large-scale tree mortality after the first year
(1.6 × 106 Mg and 1.4 × 106 Mg) and the fourth year (4.4 × 106 Mg
and 3.7 × 106 Mg) of the fire event. The resultant emissions of total
and above-ground carbon stock after the fire increased in the subse-
quent years (0.8 × 106 Mg C and 0.7 × 106 Mg C after the first year;
2.2 × 106 Mg C and 1.8 × 106 Mg C after the fourth year) depend on
the balance between the rate of decomposition of dead tree and regen-
eration of fresh canopy in a given period (de Vasconcelos et al., 2013).
Therefore, post-fire mortality assessment is highly recommended to
gain real insights about the collective response/regeneration time of a
plant community due to anomalous forest disturbances. The overall re-
sponse can be ascribed to the acute biomass burning (Andreae, 2001),
LULC changes in different eco-regions for biofuels (Searchinger et al.,
2008), and severe deforestation and associated forest degradation
(Van derWerf et al., 2009). The results echo the fact that reducing fossil
fuel emissions to the atmosphere and undertaking fire control activities
are essential elements for stabilizing atmospheric CO2 concentration
(Van der Werf et al., 2009).

Forest ecosystems of India play a significant role in the global terres-
trial carbon balance, assimilating CO2 from the atmosphere, storing car-
bon, and releasing greenhouse components to the atmosphere (Chen
et al., 2019; de Vries et al., 2017; Meifang et al., 2017). The accelerated
natural and human interventions have led frequent forest fires across
India, which significantly dismantle the native ecosystem functions
and pose a serious threat to its highly diverse and rich ecosystems. Con-
serving the biodiversity and natural resources of the forest ecosystems
from any disruptive interventions and calamities should be the core of
the policymaking for sustainable development of the region. Most of
the mountainous societies thrive in close socio-ecological associations
with nature while bearing with traditions, values, and faith weaved as
the fundamental fabric of the indigenous cultures. These associations
often appear to be fruitful to maintain fair forest management policies
integrated with the active participation of local peoples through Joint
Forest Management (JFM) and community-based forest management
stration. The coefficient of determination values represent themodel strength and percent



Table 2
Student's t-test showing mean differences of the burn indices and NPP between fire and average year.

Paired Differences t df Sig. (2-tailed)

Mean Std. Deviation Std. Error Mean 95% Confidence
Interval of the
Difference

Lower Upper

Pair 1 NPP_FIRE - Avg__NPP −52.27 44.94 0.22 −52.70 −51.85 −242.285 43,384 0.000
Pair 2 LST_FIRE - Avg_LST 0.74 1.04 0.01 0.73 0.75 147.983 43,384 0.000
Pair 3 LSWI_FIRE - Avg_LSWI −0.01 0.04 0.00 −0.01 −0.01 −80.099 43,384 0.000
Pair 4 MSAVI_FIRE - Avg_MSAVI 0.00 0.03 0.00 0.00 0.00 −22.289 43,384 0.000
Pair 5 NBR_FIRE - Avg_NBR −0.02 0.06 0.00 −0.02 −0.02 −72.122 43,384 0.000
Pair 6 NDMI_FIRE - Avg_NDMI −0.03 0.04 0.00 −0.03 −0.03 −188.956 43,384 0.000
Pair 7 SAVI_FIRE - Avg_SAVI 0.00 0.03 0.00 0.00 0.00 −26.851 43,384 0.000
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(Anthwal et al., 2010; Bhattacharya et al., 2010).Moreover, the study by
Sarin (2001) revealed that active involvement and empowering of
women for managing and preserving local forest resources through in-
tegrated public participatory and citizen science-based approaches have
an impeccable impact on formulating and regulating effective forest
management policies. In the Himalayan region, the strong negative im-
pacts of forest fire on ecosystem productivity, soil nutrient status (soil
organic carbon, nitrogen, phosphorus, and potassium), and understorey
vegetation structure can be controlled by educating local villagers about
the adverse effects of active forest fire (both human-induced and natu-
ral) on their native ecosystems (Kumar et al., 2013).
5. Conclusion

In this study, the impacts of forest fires on ecosystemproduction and
terrestrial carbon emissions are evaluated using burn indices based on
open source and freely available satellite remotely sensed data and eco-
system productionmodels. Several burn indices (LST, NBR, LSWI, NDMI,
SAVI, and MSAVI2) are incorporated for mapping the burn scars due to
forestfire and their linkageswith changes in NPP. In summary, fair asso-
ciations are observed between the burn indices and NPP. These correla-
tion values collectively indicate the coherence of forest burningwith the
loss in terrestrial NPP. Among the burn indices, the moisture indices,
LSWI, NDMI, and SAVI, are found to be the most suitable and spatially
coherent burn indicators. The ΔNPP and estimated forest fire events in
each state of India are found correlated to each other. Maximum
changes in biomass, CO2, CO, CH4, NO2, NOX, particulatematterwere ob-
served in the regionswith high forest fire events, and they also exhibit a
positive correlationwithΔNPP. The newly introduced approach (ΔNPP/
Δburn-indices) exhibits a high potential of quantifying the loss in
Fig. 5.Correlationmatrix between (a) burn indices andNPP and (b) delta burn indices andNPP.
level.
ecosystem productivity due to forest fires in different eco-regions in
India. This approach can be replicated to other similar ecosystems for
forest fire evaluation because it uses satellite data with worldwide cov-
erage, which is freely available. In addition, the current approach also
helps with an accurate delineation of burn areas using remotely sensed
data, which can be used in broader aspects if more accurate field-based
observations can be obtained. Therefore, the developed approach and
similar approaches in this direction will be valuable for planning agen-
cies, consultancies, and local governments in planning and managing
different fire mitigation strategies across regions. A detail investigation
(both quantitative and qualitative) is, therefore, essential for developing
fire inventories for different plant functional types in the fire-prone re-
gions to copewith ecological destructions and biodiversity losses due to
forest fires.
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