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• Multiple valuation approaches were
used to quantify Ecosystem Services
(ESs).

• Six regression models were utilized for
spatial modeling of ESs.

• Six major driving factors were consid-
ered for spatial regression modeling.

• Climate change is the most crucial com-
ponent of ESs degradation.

• Socio-economic and developmental fac-
tors have negligible effects on ESs.
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Most of the Earth's EcosystemServices (ESs) have experienced a decreasing trend in the last fewdecades, primar-
ily due to increasing human dominance in the natural environment. Identification and categorization of factors
that affect the provision of ESs from global to local scales are challenging. This study makes an effort to identify
the key driving factors and examine their effects on different ESs in the Sundarbans region, India. We carry out
the analysis following five successive steps: (1) quantifying biophysical and economic values of ESs using three
valuation approaches; (2) identifying sixmajor driving forces on ESs; (3) categorizing principal data components
with dimensionality reduction; (4) constructing multivariate regression models with variance partitioning;
(5) implementing six spatial regression models to examine the causal effects of natural and anthropogenic forc-
ings on ESs. Results show that climatic factors, biophysical factors, and environmental stressors significantly af-
fect the ESs. Among the six driving factors, climate factors are highly associated with the ESs variation and
explain the maximum model variances (R2 = 0.75–0.81). Socioeconomic (R2 = 0.44–0.66) and development
i).
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Sundarbans
Data dimensionality
Biophysical and economic valuation
(R2=27–0.44) factors haveweak tomoderate effects on the ESs. Furthermore, the joint effects of the driving fac-
tors are much higher than their individual effects. Among the six spatial regression models, Geographical
WeightedRegression (GWR) performs themost accurately and explains themaximummodel variances. The pro-
posed hybrid valuation method aggregates biophysical and economic estimates of ESs and addresses methodo-
logical biases existing in the valuation process. The presented framework can be generalized and applied to
other ecosystems at different scales. The outcome of this study could be a reference for decision-makers, plan-
ners, land administrators in formulating a suitable action plan and adopting relevant management practices to
improve the overall socio-ecological status of the region.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Ecosystem Services (ESs) are a variety of supports and benefits that
humans obtain from the natural environment (Costanza et al., 1997;
Braat and Rudolf, 2012; Nelson et al., 2009; Daily et al., 2009). Ecosys-
tem Service Function (ESF) refers to a bundle of ecological processes
that function at a varying environmental setups and maintain funda-
mental ESs such as production of raw material, soil formation, decom-
position of dead materials, and nutrient recycling (Braat and Rudolf,
2012; Seppelt et al., 2011). Another concept termed ecosystem service
values (ESVs) encompasses computational approaches that involve
quantification of both biophysical and monetary values of natural
goods and services (Schmidt et al., 2017). The ESVs of natural capitals
demonstrate the monetary importance of both ecological assets and
socio-ecological statuses of an ecosystem (Sannigrahi et al., 2018,
2019a, 2019b).

Most of the Earth's ESs have experienced a decreasing trend over the
last few decades (Millennium Ecosystem Assessment, 2005; Chen et al.,
2019). According to Millennium Ecosystem Assessment, 2005, approxi-
mately 60% of the global ESs are either degraded or used in an unsus-
tainable way (Xu et al., 2018). Among the key driving forces
(e.g., climatic factors, land-use change, and socio-economic factors)
that are responsible for the changing structure, process, and function
of ESs, research has focused mostly on the factors pertaining to land
degradation (Cowie et al., 2018). However, the significance and direc-
tional (both synergies and trade-offs) effect of the other driving forces
on spatially varying ESs have not been substantially explored in the
existing literature (Keesstra et al., 2018; Chen et al., 2019; Wu et al.,
2019). Thus, this paper presents a thorough evaluation that explores
the causal impacts of driving forces on the provision of ESs using as a
pilot study in the Sundarbans region, India.

Among the key driving factors, Land Use Land Cover (LULC) change
plays a significant role in ES provision (Zhang et al., 2018; Zambon et al.,
2019; Luo et al., 2019). For instance, food production, soil formation, nu-
trient, climate, and gas regulation services are directly connected to the
abundance and health of ecological land, including forest, wetland, and
grassland (Arowolo et al., 2018). The destruction and degradation of
such ecological lands is a widely spread phenomenon in the world,
and it is predominantly due to urbanization and agricultural expansion
tomeet the demandof the ever-growing population thatwould eventu-
ally lead to a substantial loss in biodiversity (Liu et al., 2019). Chen et al.
(2019) showed that the changes in pattern and configuration of the eco-
logically important natural capitals have severely affected the funda-
mental ecological processes. Robertson and Swinton, 2005 found that
the expansion of agricultural lands at about 13 million ha yr−1 globally
was mainly at the expense of forest land, and 40% of the global Earth's
surface had already been converted to cropland in order to meet the in-
creasing food demand.

Climate change can significantly impact the provision of ESs through
altering the functions of ecological systems (Nelson et al., 2013; Boone
et al., 2018; Chiabai et al., 2018; van der Geest et al., 2019; Smith et al.,
2019; Luo et al., 2019). The climate change-induced impact, both
positive and negative, onwelfare-enhancing ESs is expected to increase
rapidly around the world (Nelson et al., 2013; Schäfer et al., 2018, Dow
et al., 2013; Staudinger et al., 2012). The negative influences of climate
change on ESsmay affect and change behavioural patterns and sensitiv-
ity of different species and biotic/abiotic organisms that are beneficial
for providing many regulating, supporting, and cultural services
(Schäfer et al., 2018). Dow et al. (2013) found that, in South Asia,
every 1 °C increase above the 26 °C threshold of the night-time temper-
ature would cause a decline of crop production by 10% due to its impact
on the rice pollination and flowering services. Additionally, if the night
time temperature exceeds the maximum threshold limits (35 °C), the
current rice varieties would face hardship to adjust the increased
temperature.

Socio-economic proxies, including governmental policies, demo-
graphic and economic structure of the society, also play crucial roles in
the destabilization of ESs in a given ecosystem (Wang et al., 2012,
Maes et al., 2012; Hauck et al., 2013; Lü et al. (2012)). These factors
can be intertwined with the aforementioned LULC and climate changes
in ES dynamics. Lü et al. (2012) assessed four key ESs in the Loess Pla-
teau under China's ecological rehabilitation policies and found that the
policies with embedded economic incentives enhanced soil conserva-
tion and carbon sequestration but reducedwater yield at certain climate
conditions. Zoderer et al., 2016 investigated the link between perceived
social-cultural values of ESs and socio-demographic background in
South Tyrol (Italy), where the results demonstrated the importance of
cultural background of people in ES valuation. Wang et al. (2018) used
a dynamic-CLUE model to project different land-use scenarios for ES
valuation in Wuhan city (China) and revealed that the socio-economic
development under urban expansion would lead to degradation of all
individual ESs, but ecological protection policies could mitigate these
adverse impacts.

In the last few decades, the Sundarbans mangrove ecosystem has
suffered from a variety of anthropogenic and natural adversities. The
physical disturbances include sea-level rise and accelerated coastal ero-
sion, periodic cyclonic storms and coastal flooding, increasing salinity
due to the shortage of freshwater and siltation in Bidyadhari river lo-
cated in the Sundarbans, destruction of embankments and degradation
of mangrove, etc. (Sánchez-Triana et al., 2018; Mukherjee et al., 2013;
Manna et al., 2010; Mukherjee et al., 2013). The Sundarbans mangrove
ecosystem provides the necessary habitat for several commercially and
ecologically significant aquatic organisms that support inland and deep-
sea fisheries, which is one of the primary economic activities of the
Indian Sundarbans. Additionally, the mangrove ecosystem is highly ef-
fective infixing (15–46×1012mol yr−1) and storing (3×1014mol yr−1)
carbon (Alongi, 2009;Alongi, 2012), while the Sundarban mangrove
ecosystem alone sequesters nearly 25 × 1010 mol yr−1 of atmospheric
CO2 (Ray et al., 2013; Ray et al., 2014). Apart from these benefits, the
Sundarbans mangroves contribute substantially to the provision of
other ESs, such as reduction of coastal erosion and flood protection, nu-
trient storing and recycling, atmospheric gas regulation, biomass pro-
duction, and preventing soil erosion, which are all essential for
maintaining the livelihood of millions of people in this region. Despite
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the profound ecological and economic significance, limited efforts are
offered so far to explore the socioecological significance of this vibrant
ecosystem adequately.

This study has made an effort to identify the key controlling factors
and assess their causal effects on ESs in the Sundarbans region. Specific
objectives of this study are (1) to identify the key driving factors,
i.e., biophysical factors, climatic factors, land degradation factors, envi-
ronmental stress factors, development and socio-economic factors
that have substantial impact on ESs; (2) to analyze synergies
and trade-offs among the driving factors and ESs; (3) to evaluate the
effectiveness of the proposed hybrid approach for policy implication
and decision-making. The outcome of this study can not only enrich
the current knowledge of ES research but also provide a more inclusive
and in-depth view of the complex socioecological nexus between
human development and ecosystem management, in line with the
12th Sustainable DevelopmentGoal stated as “Sustainable consumption
and production aims at doingmore and better with less by empowering
sustainable and responsible consumption and improving the status of
ecosystem services.” (https://www.undp.org/content/undp/en/home/
sustainable-development-goals.html).

2. Materials and methods

2.1. Study area

The Sundarbans mangrove is the world's largest single tract
halophytic-mangrove ecosystem that covers nearly 3% total area of the
world mangroves (Mitra, 2015; Akhand et al., 2016). It is also the
world's largest coastal wetland ecosystem, lying in the convergence of
Rivers Ganga, Brahmaputra, and Meghna and covering approximately
10,000 km−2 geographical area, of which Bangladesh shares 62% and
India shares 38%. The physiography of the deltaic Sundarbans includes
sand beaches, tidal creeks and inlets, sand flats, mudflats, dunes, estuar-
ies, salt marsh, and mangrove littoral swamps (Fig. 1). This area experi-
ences three meteorological seasons, pre-monsoon from February to
May, monsoon from June to September, and post-monsoon from Octo-
ber to January (Ray et al., 2014). The average yearly rainfall is
Fig. 1. Location of the study area, andmajor land use land cover of Sundarbans. 0=DiamondHa
5= Barrackpur I, 6 = Sandeshkhali I, 7 = Bishnupur I, 8 = Kultali, 9 =Mandirbazar, 10= Raj
16=Hingalganj, 17= Bhangar I, 18= Jaynagar I, 19=Magrahat I, 20=Habra I, 21=Hasnab
Haroa, 28= Gaighata, 29= Canning I, 30=Mathurapur I, 31= Falta, 32= Barasat II, 33 = B
Barasat I, 39= Basirhat I, 40= Bongaon, 41= Budge Budge II, 42= Gosaba, 43= Amdanga,
Sandeshkhali II, 50 = Kakdwip.
1920mm and the average yearly humidity is around 82%. The elevation
of the deltaic complex of Sundarbans varies from 3 to 8 m from the
mean sea level (Ray et al., 2014). The Indian Sundarbans consists of
102 connected and dispersed islands, of which 52 are habited, 48 are
uninhabited, and the remaining 2 have been eroded due to sea-level
rise (Mitra and Zaman, 2015). The Sundarbans area was enlisted as a
UNESCO world heritage site in 1997 for its profound socio-ecological
and biodiversity importance.

2.2. Data source and processing

This study incorporates multi-source remote sensing, climatic, bio-
physical, socio-economic, demographic, and ancillary data products
for approximating six major driving factors: biophysical, climatic, land
degradation, environmental stress, socio-economic, and developmental
factors that can have substantial effects on the provision of ESs in the
Sundarbans (Table S1). The smoothed and filtered EnhancedVegetation
Index (EVI) and Normalized Difference Vegetation Index (NDVI) data
provided by the University of Natural Resources and Life Sciences, Vi-
enna (http://ivfl-info.boku.ac.at/) were used as biophysical variables. A
biophysical scale factor was used to retrieve the actual EVI and NDVI
values. The Net Primary Productivity (NPP) was derived from the Mod-
erate Resolution Imaging Spectroradiometer (MOD17) ecosystem
model The data required for the MOD17 model include absorbed
photo-synthetically active radiation (APAR), fraction of photo-
synthetically active radiation (fPAR), photosynthetically active radiation
(PAR), solar radiation, vapour pressure deficit, temperature, and water
stress scalar factors. The topographic variables, including elevation and
slope information, were derived from the 90 m Shuttle Radar Topogra-
phyMission (SRTM) Digital ElevationModel (DEM) data. The Land Sur-
face Water Index (LSWI) and Soil Adjusted Vegetation Index (SAVI)
variables were retrieved from the Landsat Thematic Mapper (TM)
data. The Soil Moisture (SM) and other key climatic variables were ex-
tracted from the gridded climate data provided by Terra Climate. The
development variables, including educational, infrastructure, transport,
and power usage facility, were taken from district statistical handbook
(DSH), Census of India (http://censusindia.gov.in/). Land Surface
rbour II, 1= Barrackpur II, 2= Bishnupur II, 3= ThakurpukurMahestola, 4=Namkhana,
arhat, 11=Minakhan, 12= Bhangar II, 13= Jaynagar II, 14=Magrahat II, 15=Habra II,
ad, 22= Baruipur, 23= Canning II, 24=Mathurapur II, 25= Sagar, 26=Deganga, 27=
asirhat II, 34 = Bagda, 35= Basanti, 36= Diamond Harbour I, 37 = Patharpratima, 38=
44= Baduria, 45= Swarupnagar, 46 = Budge Budge I, 47= Sonarpur, 48= Kulpi, 49 =
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Temperature (LST), Palmer Drought Severity Index (PDSI), and Stan-
dardize Precipitation and Evapotranspiration Index (SPEI) are the key
environmental stress variables used in this study. Monthly PDSI data
were aggregated and converted into the annual unit to calculate the
yearly drought severity of the region. Additionally, 12-year SPEI values
were gathered for estimating the annual water balance andwater avail-
ability of the region. The aridity index (AI) and evaporative index (EI)
values were derived from the ratio of precipitation and evapotranspira-
tion. These two indices designate the climatic in-favorability of the re-
gion. The land degradation indicator include landscape fragmentation
and connectivity indices. These were calculated using the Fragstat
v4.2.1.603 software. Landsat TM data was utilized for this purpose. Sev-
eral demographic and economic proxies were incorporated to establish
the linear and non-linear associations between the socio-economic
changes and ESs. These variables were mainly derived from the census
of India report and district statistical handbook provided by the Depart-
ment of Planning & Statistics, Government of West Bengal (https://
www.wbpspm.gov.in/). Tables S1 and S2 provide all the aforemen-
tioned details of data processing.

2.3. Identification of key ecosystem services of the Sundarbans

A primary survey was conducted in early 2018 to identify the most
relevant ESs of the Sundarbans region. The intention of the participatory
public surveywas to get acquaintedwith the perception and awareness
of the local residents about ESs and how these varieties of ecosystem
and landscape components shape their daily livelihoods in this complex
and dynamic deltaic lobe of the Sundarbans. In the beginning, 24 provi-
sioning, 18 supporting, and 10 regulating services were included in the
initial questionnaire for the public participatory survey. A total of 14 vil-
lages, mainly located in the Patharpratima, Gosaba, and Kultali blocks in
the Sundarbans, were selected for this analysis. The responses of the
local residents (N = 160) in connection with their perception and
awareness about key ESswere collected using a five-point scale, ranging
from 0 to 4. For provisioning and cultural services, responses were col-
lected using the following scale: 0 = never used, 1 = used once; 2 =
used few/several times; 3 = used regularly; 4 = do not know. For reg-
ulating services, response modules were categorized as 0 = no rele-
vance; 1 = low relevance; 2 = moderate relevance; 3 = high
relevance; 4=very high relevance. In this selection process, the 5th op-
tion (i.e., 4=do not know) has not been considered in the final analysis
on provisioning and cultural services. This option (4 = do not know)
was included in the questionnaire only to know how many people
have absolutely no ideawhat ESs stand for andwhat was the reason be-
hind this unawareness. Additionally, service providing capacities of the
main ecosystem types, including rural/urban settlement, grassland/
mixed vegetation, cropland, aquaculture, mangrove, social forestry,
wetland/pond/lake, and river/stream, were evaluated through a
landscape-based ESs scoring approach proposed by Burkhard, 2009;
Burkhard, 2014 (Tables S3, S4, S5).

2.4. Quantification of ecosystem services

To overcome the uncertainty and bias in the valuation and calcula-
tion of ESs, three different approaches, namely biophysical, economic,
and hybrid methods, were incorporated in this study. Both biophysical
and monetary values of the key ESs were estimated. Furthermore, a hy-
brid ESs valuation method was developed by aggregating the biophysi-
cal andmonetary values of ESs. The details of each valuationmethod are
described below.

2.4.1. Biophysical methods
The biophysical estimates of ESswere based on the calculation of Net

Primary Productivity (NPP). NPP was derived from five ecosystem
models including the Carnegie-Ames-Stanford-Approach (CASA)
(Potter et al., 1993; Field et al., 1995), Eddy Co-variance Light Use
Efficiency (EC-LUE) (Yuan et al., 2007, 2014), Global Production and Ef-
ficiency Model (GLO-PEM) (Prince and Goward, 1995), Moderate Reso-
lution Imaging Spectroradiometer Model (MOD17) (Zhao et al.,
2006Running et al., 2004), and Vegetation Photosynthesis Model
(VPM) (Xiao et al., 2004). The overall performances of the five NPP
models were thoroughly evaluated to identify the best performing
model. The biophysical and economic values of 10 key ESs including bi-
ological control, climate regulation, cultural, disturbance regulation, ge-
netic, habitat, nutrient cycling, raw material provision, water supply,
and waste treatment services were estimated from NPP and other bio-
physical inputs (e.g., precipitation, evapotranspiration, runoff, elevation,
slope, water body occupancy ratio). Additionally, a spatially explicit In-
tegrated Valuation of Ecosystem Services and Tradeoffs (InVEST)model
was adopted for quantifying the biophysical values of six major ESs –
carbon storage, sediment retention, habitat service, water supply, and
nutrient retention (Barral and Oscar, 2012; Song et al., 2015, Song and
Deng, 2017).

2.4.2. Economic methods
The economic valuation of ESs consisted of five successive steps:

(1) determining equivalent weight coefficient; (2) parameter adjust-
ment and rectification; (3) determining standard invariant equivalent
value factor; (4) dynamic correction and invariant/comparable eco-
nomic valuation; and finally (5) estimating regional ESV using adjusted
coefficient (Sannigrahi et al., 2019a, 2019b). For determining the ad-
justed equivalent weight coefficient of each ES of interest, the global
equivalent weights developed by Costanza et al. (1997, 2014) were
adopted. As the food production function of agricultural land is consid-
ered to be the most direct ES, the weight coefficient of food production
service of cropland was used as the base for approximating the weight
coefficients of other ESs. In addition, for adjusting the global weight co-
efficients and making it functional for local- or regional-level assess-
ment, six dynamic biophysical and climatic variables, including NPP,
NDVI, crop yield, precipitation, fractional vegetation cover (FVC), and
NPP/NDVI were applied. Using the average crop production and yield
statistics of the Sundarbans, the economic value of the food production
services of farmland were estimated by assuming that the projected
monetary value of food production service could be 1/7 of the real
food production estimates (Xie et al., 2008, 2017; Liu et al., 2012).
After calculating the per unit food production services of cropland, the
economic values of the rest of the ESs were estimated. Additionally,
Pearl's S-shaped Growth Curve (PGC)model, Engel coefficient, Inflation
Rate (IR), and Consumer Price Index (CPI) datawere used for calculating
the invariable and comparable economic values of the ESs. The details
about the economic valuation methods and approaches are discussed
in detail in Sannigrahi et al., 2019a, 2019b.

2.4.3. Hybrid methods
A hybrid method was developed in this study, which is a combina-

tion of biophysical and economic valuation methods. The biophysical
and economic valuation approaches, which were used for valuation
andmapping of ESs, are not exempted from inevitable biases and uncer-
tainties. The biophysical approach mostly depends on variation and
quality of key biophysical variables, including NPP, EVI, NDVI, and cli-
matic variables like precipitation, temperature, evapotranspiration,
etc. The biophysical models included Integrated Valuation of Ecosystem
Services and Trade-off (InVEST), ARtificial Intelligence for Ecosystem
Services (ARIES), which rely solely on current and future LULC, temper-
ature, precipitation, evapotranspiration, soil texture, elevation, and
slope information. These variables were predominantly derived from
the secondary data sources (remote sensing images and satellite-
based reanalysis gridded climate datasets). On the contrary, the eco-
nomic valuation of ESs is connected to several direct and indirect
proxy methods including Contingent Valuation (CV), Payment for Eco-
system Services (PES), Travel Cost (TC), Damage Cost (DC), Benefits
Transfer Method (BTM), and statistical value transfer model. Pearson

https://www.wbpspm.gov.in/
https://www.wbpspm.gov.in/
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correlation coefficient and Coefficient of determination have been im-
plemented to evaluate the consistency between biophysical and eco-
nomic valuation approaches. The outcomes of biophysical and
economic indices were integrated to form a hybrid method. Addition-
ally, to assess the effects of the selected biophysical, climatic, environ-
mental stresses, land degradation, socio-economic, and developmental
factors on ESs, a spatial regressionwas performed for all three valuation
methods (biophysical, economic, and hybrid). The details of the driving
factors and spatial regression models are discussed in Sections 2.5 and
2.7.

2.5. Selection of driving factors

Six relevant driving factors, including biophysical, climatic, environ-
mental stresses, land degradation, socio-economic, and developmental
factors, were used in this study to evaluate their effects on ESs. The bio-
physical factors consist of 8 variables, the climatic factors include 12 var-
iables, the development factors have 4 variables, the environmental
stress factors include 9 variables, the land degradation factors are com-
prised of 16 variables, and a total of 11 variables was selected to repre-
sent the socio-economic status of the region. The details about the
selection and sources of these driving factors are given in Table S2.
The zonal mean values of raster layers were calculated using the ArcGIS
zonal statistics tool.

2.6. Data dimensionality reduction and variance partitioning analysis

The data dimensionality reduction (DDR) techniques including prin-
cipal component analysis (PCA), factor analysis (FA), cluster analysis en-
able to reduce the dimension of data and hence make the data-mining
process more efficient by simplifying the classification, visualization,
communication, and storage of large arrays of data. Among the widely
used DDR methods, PCA is most frequently used and appears to be the
most consistent DDR technique. The PCA finds the direction of principal
components that explains maximum variances in the data set and ac-
cordingly rotates each data point to its coordinates using the orthogo-
nal, oblique, and varimax rotation approaches (Holden et al., 2006).
The overall functions of DDR are categorized into two main types: fea-
ture extraction and feature selection (Fu and Wang, 2003). Although
the variety of DDRmethods are intended to uphold themain character-
istics of the original data, it is sometimes challenging to prevent data
loss mainly to misjudgment of original data layers (Fu and Wang,
2003). In this study, the PCA method was utilized to adjust the dimen-
sion and magnitude of the original data layers used for approximating
the six major driving factors. Subsequently, six variance partitioning
methods were performed, including Partial Least Square Regression
(PLSR), Principal Component Regression (PCR), Variable Inflation Factor
(VIF), Variable Importance Analysis (VIP), Canonical Correspondence
Analysis (CCA), and Redundancy Analysis (RDA), to remove the redun-
dant data layers and identify themost relevant driving factors. The PLSR
and PCR models consist of descriptive statistics, correlation and stan-
dardized coefficients of estimates, actual and predicted estimates, re-
dundancy and VIP information, confidence intervals, factor loadings,
factor correlation, factor scores, and data outliers. Using the PLSR ap-
proach, the key driving factors that had maximum explanatory power
and thus explained the maximum model variances were identified.
The PCR and PCA were used to recognize the key components, which
explained the maximum model variances and thus increased the
model performances. Using themulticollinearity test, the variable infla-
tion factor, correlation, regression, and tolerance values of the key ex-
planatory variables were calculated. Higher collinearity indicates
higher dependency among the control variables and vice versa. The
PCA, PCR, PLSR, VIP, and VIF tests were performed in XLSTAT Version
Fig. 2. The spatial interaction between the driving factors and ESs, derived from GWR
model. BOB = Bay of Bengal.
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2016.02.28451. The associations between the six groups of factors and
the ESs provided by natural capitals were examined through hybrid Re-
dundancy Analysis (RDA) and Canonical Correspondence Analysis
(CCA). These tests were performed in the CANOCO v4.5 statistical soft-
ware. Both RDA and CCA evaluated the synergetic and trade-off associ-
ation between thedriving factors andESs. Additionally, for CCAandRDA
tests, 11 final explanatory variables, i.e., elevation, LSWI, slope, SM, ET,
TRANS_FAC, POWER_FAC, SPEI, FOREST_A, AREA_NA, and CULT_W,
were used. The final 11 variables were derived from the variance
partitioning and data reduction analysis. These variables had the accept-
able multicollinearity values (below 4) and based on the collinearity
statistics of these variables, several multivariate regression and redun-
dancy analysis were performed (Table S6). The aforementioned PCA,
PLSR, PCR, VIF, VIP, RDA, and CCA tests were implemented for all three
types of ESs methods (biophysical, economic, and hybrid) to identify
the best method for ES evaluation (Tables S7, S8, S9, S10, S11).
Fig. 3. Spatial interaction between the a
2.7. Spatial regression and autocorrelation models

The spatial autoregressive and multivariate regression methods
have been the focus of recent scientific studies in spatial decision
models (Kelejian and Prucha, 1998; Drukker et al., 2013). During the
past decades, this approach was used extensively in urban growth
modeling and environmental suitability studies (Qu and Lee, 2015;
Qiu and Turner, 2013; Li et al., 2018). The spatial regression models
(SRM) are highly crucial to evaluate the spatial effects (Chakraborti
et al., 2019; Fotheringham et al., 1998; de Lima et al., 2005) including
spatial autocorrelation, spatial stationarity, and heterogeneity of spatial
objects on regression models (Schröter et al., 2015; Tenerelli et al.,
2016; Maes et al., 2012). Spatial autocorrelation measures the spatial
dependency of the objects in a feature space. This indicates the similar-
ity of spatial patterns over space. Conversely, the random spatial pattern
exhibits no spatial autocorrelation. Six spatial regression models were
ll/VIF based driving factors and ESs.
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performed in this study to evaluate the spatial dependency and associ-
ation between the driving factors and ESs. These include Geographical
Weighted Regression (GWR), Spatial Error Model (SEM), Spatial Lag
Model (SLM), Spatial Error Lag model (SEM_SLM), Ordinary Least
Square (OLS) model, and Spatial Autoregressive Model (SAM). Among
these six regressionmodels, theOLSmodel was utilized for determining
the global interaction between the six driving factors and 10 key ESs.
However, the OLS model does not consider any spatial auto-
correlation or homogeneity in the modeling. Furthermore, to examine
the individual and combined effects of the driving factors on ESs, the
Geographical Detector Model (GDM) was implemented in this study.
The GWR is a spatial model that exhibits a spatial non-stationarity in
modeling processes (Fotheringham et al., 1998). Unlike OLS, the GWR
model produces varying local attributes throughout the feature space
after integrating the spatially referenced data layers (Fotheringham
et al., 2003; Brunsdon et al., 2002; Lugoi et al., 2019). The GWR model
is expressed as follows:

Yi ¼ βo aj; bj
� �þ

Xk

i¼1

βi a j; bj
� �

Xi þ εij ð1Þ

where Yi is response variable (ES in this case);βo, βi, and ε aremodel pa-
rameters; a and b are geographical coordinates (latitude and longitude)
of the jth point, Xi is explanatory variable i (climate, biophysical, land
degradation, environmental stress, socio-economic, and development
factors). Additionally, several spatial autoregressive models, including
SAR, SEM, SLM, SEM_SLM were also incorporated. The SAR model
showed great potential in resolving spatial econometric problems as it
consists of a define structure that often leads the model inferences
more straightforward and facilitates replication (Qu and Lee, 2015;
Kelejian and Prucha, 1998). The GWR model was performed using the
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GWR v4.0 software. The SAM, SEM, SLM, SEM_SLM models were per-
formed using GeoDa v1.12.1.161 and GeoDaSpace v1.2 software mod-
ules. The GDM was utilized using the GeoDetector software package
(Wang et al., 2010). Additionally, the OLS model was performed using
ArcGIS spatial statistics toolbox.

To analyze the spatiotemporal association between explanatory and
response variables (ESs), the Local Geary statistic was used in this study.
The Local Geary statistic is generally used to estimate the local indica-
tors of spatial association for assessing the attribute similarity of feature
space (Anselin, 1995, Anselin, 2019). The value of Local Geary statistic
ranges from 0 to 2: a value close to 0 indicates a positive spatial autocor-
relation and clusters, while a value close to 2 indicates a negative spatial
autocorrelation and outliers; whereas a value close to 1 indicates a ran-
dom pattern of distribution.

3. Results

3.1. Spatial regression between driving factors and ESs using GWR

The spatial interactions between the six driving factors and ESswere
analyzed using the GWR model (Fig. 2). For all the three ES valuation
methods, biophysical and climatic factors were highly correlated with
the ESs, characterized by a moderate to very high local R2 values
(R2 = 0.83–0.97). Additionally, very high local R2 values (R2 =
0.84–0.97) were obtained over the southern region (Gosaba, Kultali,
Patharpratima, Namkhana, Sagar, Kakdwip, Mathurapur, Kulpi,
Jayanagar). The same association was observed between the climate
factors and ESs, where moderate to very high local R2 values
(R2 ≥ 0.84) were accounted for the southernmost blocks. For the
economic method, a reverse association was observed between
climate factors and ESs. While examining the spatial association
between the development factors and ESs, moderate local R2 values
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Table 1
GWR statistics based on six explanatory factors, VIF based filtered factors, and all explan-
atory factors for different ecosystem services derived from biophysical, economic, and hy-
brid method.

Driving factors R2 Adj. R2 Classic AIC AICc BIC/MDL Intercept

Biophysical ESs
Biop 0.842 0.777 57.839 69.107 84.482 3.683
Clim 0.918 0.852 37.890 68.527 77.867 26.827
Dev 0.637 0.504 96.374 104.425 119.354 2.720
EnvStress 0.847 0.770 59.749 74.783 89.867 −0.795
Ldeg 0.817 0.681 78.548 108.302 118.086 101.338
Soceco 0.554 0.347 113.684 128.025 143.213 2.486
VIF 0.876 0.776 58.905 89.401 98.813 3.574
All_Factors 0.879 0.808 49.437 66.708 81.337 0.855

Economic ESs
Biop 0.843 0.714 64.751 93.526 103.792 5.229
Clim 0.842 0.754 59.001 77.774 92.005 1.756
Dev 0.428 0.277 109.497 114.493 127.971 3.197
EnvStress 0.649 0.499 93.966 106.118 121.490 9.647
Ldeg 0.725 0.520 94.020 123.773363 133.558 −81.522
Soceco 0.539 0.331 109.531 123.364 138.614 2.962
VIF 0.659 0.497 95.079 109.988 125.093 5.466
All_Factors 0.432 0.299 108.921 113.757 127.117 3.820

Hybrid ESs
Biop 0.823 0.75 0.62 0.76 0.80 0.76
Clim 0.932 0.82 0.70 0.75 0.83 0.82
Dev 0.679 0.33 0.29 0.52 0.45 0.38
EnvStress 0.874 0.78 0.74 0.79 0.79 0.79
Ldeg 0.842 0.77 0.75 0.77 0.77 0.80
Soceco 0.669 0.59 0.58 0.80 0.69 0.61
VIF 0.929 0.70 0.594 0.72 0.76 0.72
All_Factors 0.954 0.69 0.67 0.68 0.75 0.70

GWR= geographically weighted regression; ESs = ecosystem services; Biop= biophys-
ical factors; Clim = climatic factors; Dev = development factors; EnvStress = environ-
mental stress factors; Ldeg = land degradation; Soceco = socioeconomic factors; VIF =
variable inflation factor based filtered factors; AIC = Akaike information criterion;
BIC = Bayesian Information Criterion; MDL = minimum description length.
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(R2 = 0.46–0.70) were estimates for Gosaba, Patharpratima, Kultali,
Kakdwip, Basanti, Hingalganj blocks, while very low regression values
were accounted for the northern region. The association between the
climatic factors and ESs derived from the economic method was very
high (R2 = 0.84–0.86) over the northern region, and considerably
Table 2
Individual and joint effects of the driving factors on ESs (a) biophysical, (b) economic, and (c)

Biop_Factor Clim_Factor Dev_F

(a)
Biop_Factor 0.114
Clim_Factor 0.774 0.670
Dev_Factor 0.225 0.713 0.015
EndStress_Fac 0.680 0.753 0.569
Ldeg_Fac 0.649 0.709 0.632
Soceco_Fac 0.620 0.780 0.359

(b)
Biop_Factor 0.050
Clim_Factor 0.221 0.051
Dev_Factor 0.419 0.282 0.202
EndStress_Fac 0.294 0.300 0.421
Ldeg_Fac 0.176 0.094 0.305
Soceco_Fac 0.625 0.460 0.496

(c)
Biop_Factor 0.122
Clim_Factor 0.754 0.658
Dev_Factor 0.225 0.693 0.002
EndStress_Fac 0.597 0.766 0.490
Ldeg_Fac 0.577 0.709 0.589
Soceco_Fac 0.652 0.778 0.437

ESs = ecosystem services; Biop_Factor = biophysical factor; Clim_Factor = climate factor; Dev
land degradation factor; Soceco_Fac = socioeconomic factor.
lower local R2 values (R2 = 0.81–0.84) were counted for the southern
part of the region. For environmental stress, land degradation, and
socio-economic factors, most of the blocks adjacent to Bay-of-Bengal
(BOB) have produced a high to a very high spatial association between
the said driving factors and ESs, mainly those are derived from biophys-
ical and hybrid methods (Fig. 2). The spatial interaction between all six
factors, VIF based filtered factors with ESs were also analyzed and pre-
sented in Fig. 3. Among the three ESs valuation methods, moderate to
very high regression values were accounted between the all/VIF factors
and ESs, while, comparatively lower estimateswere calculated between
the all/VIF factors and ESs derived from the economic methods (Figs. 3,
4). The summarized results of the GWR model is reported in Table 1.
From the GWR estimates, it was found that among the six driving fac-
tors, the climatic factors produced the highest association with the
ESs, characterized by a maximum local R2 value, followed by environ-
mental stress, biophysical, land degradation, development, and socio-
economic factors.

3.2. Effects the driving factors on ESs

The individual and joint effects of the driving factors on ESswere an-
alyzed using the GDM (Table 2). The interaction effects (q) of biophys-
ical and climatic factors on ESs were the greatest, followed by
biophysical/environmental stress, biophysical/land degradation, and
biophysical/socio-economic factors. Additionally, the biophysical fac-
tors demonstrated very weak interaction effects with the development
factors. Climate factors exhibited very strong interaction effects with
socio-economic factors, followed by environmental stress, develop-
ment, and land degradation factors. The interaction between develop-
ment factors and other factors was the highest for land degradation
and environmental stress factors (Table 2). The q statistics between
the final 11 variables and ESs were estimated and presented in
Table 3. For elevation, the interaction effects were the largests for
ELEV/AREA_NA, followed by ELEV/SM, ELEV/LSWI, ELEV/SPEI, ELEV/ET,
ELEV/SLOPE, ELEV/CULT_W, ELEV/TRANS_FAC, ELEV/POWER_FAC, and
ELEV/FOREST_A, respectively. Similarly, the interaction effects between
the 11 explanatory factors were estimated. Among the 66 pairs of inter-
action results, the highest interaction was obtained between ET and
SPEI, followed by ET/LSWI, ET/TRANS_FAC, ET/SLOPE (Table 3).
hybrid methods.

actor EndStress_Fac Ldeg_Fac Soceco_Fac

0.509
0.581 0.477
0.684 0.687 0.206

0.138
0.210 0.019
0.647 0.528 0.395

0.418
0.551 0.429
0.677 0.699 0.240

_Factor = development factor; EndStress_Fac = environmental stress factor; Ldeg_Fac=



Table 3
The q statistics for the explanatory variables derived from Geographic Detector Model.

ELEV LSWI SLOPE SM ET TRANS_FAC POWER_FAC SPEI FOR_A AREA_NA CULT_W

(a) Biophysical ESs
ELEV 0.29
LSWI 0.84 0.52
SLOPE 0.77 0.83 0.38
SM 0.84 0.85 0.86 0.47
ET 0.81 0.92 0.91 0.83 0.68
TRANS_FAC 0.58 0.75 0.87 0.82 0.92 0.15
POWER_FAC 0.51 0.78 0.84 0.62 0.82 0.54 0.19
SPEI 0.82 0.88 0.85 0.86 0.93 0.74 0.80 0.45
FOREST_A 0.40 0.77 0.44 0.51 0.85 0.34 0.37 0.53 0.25
AREA_NA 0.86 0.83 0.88 0.84 0.89 0.61 0.79 0.88 0.55 0.54
CULT_W 0.65 0.59 0.42 0.51 0.75 0.29 0.29 0.49 0.30 0.67 0.05

(b) Economic ESs
ELEV 0.52
LSWI 0.79 0.22
SLOPE 0.80 0.79 0.28
SM 0.86 0.79 0.77 0.38
ET 0.73 0.65 0.56 0.83 0.21
TRANS_FAC 0.80 0.74 0.58 0.76 0.56 0.13
POWER_FAC 0.79 0.88 0.76 0.76 0.71 0.76 0.21
SPEI 0.85 0.53 0.56 0.77 0.53 0.40 0.67 0.23
FOREST_A 0.55 0.24 0.31 0.40 0.28 0.22 0.23 0.29 0.04
AREA_NA 0.69 0.51 0.60 0.55 0.46 0.53 0.51 0.45 0.29 0.25
CULT_W 0.74 0.48 0.59 0.54 0.40 0.45 0.44 0.47 0.22 0.41 0.16

(c) Hybrid ESs
ELEV 0.28
LSWI 0.79 0.50
SLOPE 0.79 0.78 0.34
SM 0.82 0.84 0.83 0.51
ET 0.80 0.93 0.91 0.80 0.67
TRANS_FAC 0.61 0.80 0.84 0.84 0.96 0.21
POWER_FAC 0.49 0.74 0.78 0.68 0.80 0.61 0.17
SPEI 0.86 0.87 0.79 0.89 0.93 0.81 0.75 0.47
FOREST_A 0.44 0.81 0.46 0.58 0.91 0.45 0.44 0.60 0.35
AREA_NA 0.85 0.85 0.89 0.92 0.94 0.65 0.81 0.93 0.58 0.57
CULT_W 0.73 0.57 0.41 0.55 0.74 0.33 0.27 0.53 0.40 0.71 0.06

ELEV= elevation; LSWI= Land SurfaceWater Index; SM= soil moisture; ET= evapotranspiration; TRANS_FAC= transport facility; POWER_FAC= power facility; SPEI = Standardise
Precipitation and Evapotranspiration Index; FOR_A= forest area; AREA_NA= area not available for agriculture; CULT_W= culturable waste.
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The interactions between the six driving factors and ESs were
evaluated by six spatial regression models (Table 4). Among the six
driving factors, the climatic factors are significantly associated with
the ESs, characterized by a very high coefficient of determination
value (R2 = 0.74–0.81). The other driving factors also impacted the
ESs significantly. The biophysical factors produced a very high regres-
sion estimate (R2 = 0.59–0.77), followed by environmental stress
(R2 = 0.57–0.79), land degradation (R2 = 0.71–0.78), socio-economic
(R2 = 0.45–0.66), and development factors (R2 = 0.27–0.44), respec-
tively (Table 4). Table S7 shows the effects of the six explanatory factors
on individual ESs derived from PCR and PLSR models. The interaction
between the explanatory factors and ESs showed the highest values
for the climate regulation and rawmaterial provision services, followed
by genetic service, nutrient cycling, water supply, habitat, waste treat-
ment, disturbance regulation, cultural service, and biological control
services, respectively (Table S7).

To examine the directional associations between the 11 driving var-
iables and ESs, two redundancy tests, including hybrid redundancy
analysis (hRDA) and hybrid canonical correspondence analysis
(hCCA), were performed and presented in Fig. 5. Among the 11 vari-
ables, SM, LSWI, ET, AREA_NA, FOREST_A were highly correlated with
the ESs derived frombiophysical and hybridmethods. Therewas no sig-
nificant association between the driving factors and ESs estimated using
the economicmethod. The other variables, i.e., POWER_FA, SLOPE, ELEV,
CULT_W, and SPEI, did not exhibit any significant association with the
ESs. Therefore, the moisture factors characterized by SM, LSWI, and ET
and socio-economic factors (the area not available for agriculture and
forest area) were the most significant driving factors with a substantial
contribution to the degradation of ESs (Fig. 5).

4. Discussion

While considering the interaction between each biophysical factor
and ESs, the greenness factors, i.e., EVI, NDVI,were observed to behighly
associated with gas regulation and climate regulation functions. Both
gas regulation and climate regulation services were calculated from
the results of NPP, which is the outcome of biophysical (EVI, NDVI), cli-
matic (solar radiation, temperature, soil moisture), and bioclimatic
(PAR, LUE, fPAR, APAR) variables. The NPP was found very high over
the southern BOB region, which is mostly covered by dense mangrove
forests. This suggests that the Sundarbans mangroves are sequestering
a substantial amount of gaseous carbon; therefore, strengthening the
protection and preservation of Sundarban mangroves would be an ef-
fective strategy for the reduction of carbon dioxide emissions andmain-
taining the carbon balance in this deltaic ecosystem (Rodda et al., 2016).
Several research has reported about the carbon sink capacity of the
Sundarbanmangroves. Rodda et al. (2016) estimated the net carbon in-
flux of the Sundarbans using the Eddy covariance measurement, which
is 249 ± 20 gC m−2 year−1 from April 2012 to March 2013. Ganguly
et al. (2008) found that the estimated carbon sink of entire Sundarbans
was 206 Gg day−1 while the mean net flux of Lothian Island and
Sajnekhali region was 48.3 gCO2 m−2 day−1. The study conducted by
Chanda et al. (2013) measured the CO2 influx of Sundarban mangroves
at different locations viz. Jharkhali, Henry Island and noted that the



Table 4
Coefficient of determination (R2) value shows the effects of the driving factors on ESs.

Driving factors Coefficient of determination (R2)

GWR OLS SAR SEM_SLM SEM SLM Average

Biophysical ESs
Biop 0.842 0.76 0.66 0.78 0.82 0.77 0.772
Clim 0.918 0.78 0.63 0.86 0.78 0.78 0.792
Dev 0.637 0.27 0.24 0.47 0.39 0.35 0.393
EnvStress 0.847 0.76 0.74 0.79 0.78 0.77 0.780
Ldeg 0.817 0.76 0.75 0.75 0.79 0.79 0.777
Soceco 0.554 0.43 0.42 0.68 0.59 0.52 0.532
VIF 0.876 0.67 0.58 0.68 0.77 0.69 0.712
All_Fac 0.879 0.63 0.62 0.61 0.75 0.65 0.691

Economic ESs
Biop 0.843 0.53 0.51 0.54 0.56 0.54 0.587
Clim 0.842 0.75 0.63 0.75 0.75 0.75 0.745
Dev 0.428 0.24 0.22 0.23 0.27 0.25 0.274
EnvStress 0.649 0.53 0.50 0.58 0.58 0.55 0.565
Ldeg 0.725 0.69 0.67 0.68 0.78 0.69 0.707
Soceco 0.539 0.46 0.21 0.45 0.53 0.49 0.447
VIF 0.659 0.54 0.54 0.53 0.59 0.54 0.566
All_Fac 0.432 0.38 0.36 0.40 0.38 0.40 0.390

Hybrid ESs
Biop 0.823 0.75 0.62 0.76 0.80 0.76 0.752
Clim 0.932 0.82 0.70 0.75 0.83 0.82 0.809
Dev 0.679 0.33 0.29 0.52 0.45 0.38 0.443
EnvStress 0.874 0.78 0.74 0.79 0.79 0.79 0.794
Ldeg 0.842 0.77 0.75 0.77 0.77 0.80 0.782
Soceco 0.669 0.59 0.58 0.80 0.69 0.61 0.658
VIF 0.929 0.70 0.594 0.72 0.76 0.72 0.736
All_Fac 0.954 0.69 0.67 0.68 0.75 0.70 0.741

Biop = biophysical factors; Clim = climatic factors; Dev = development factors;
EnvStress = environmental stress factors; Ldeg= land degradation factors; Soceco= so-
cioeconomic factors; VIF=variable inflation factor basedfiltered factors; All_Fac=all fac-
tors; GWR = geographical weighted regression; OLS = ordinary least square; SAR =
spatial auto-regressive model; SEM= spatial error model; SLM= spatial lag model.
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fluxes varied from 33.69 to 114.91 gCO2m−2 day−1. The findings of this
study are in accordance with all these reported statistics. The biophysi-
cal factors, i.e., EVI, NDVI, NPP, SAVI, LSWI, showed positive effects on
ESs, especially over the southernmost region adjacent to coastal BOB.
This region is mostly covered by mangrove and truncated riverine net-
work originating from Hooghly, Bidyadhari, Matla rivers stretched
from east to west of Sundarbans. Therefore, the proxies that resemble
the biophysical characteristics and richness of the region can be good
estimators for evaluating the effects of ecosystem health and vigor on
ESs.

Changes in the key climatic components (e.g., temperature, precipi-
tation, evapotranspiration) can have significant impacts on ESs (Geest
et al., 2018; Bangash et al., 2013; Buytaert et al., 2011; Walther, 2010).
Study conducted by Nelson et al. (2013) thoroughly evaluated the plau-
sible consequences of climate change on different ecosystem functions
and suggested that climate change will modify the ability of different
key ecosystem functions that support the provision of multiple ecosys-
tem services including food production, wildfire regulation, hazard re-
duction and coastal flood protection, marine and inland fishery
production, water supply, and nature-based tourism and recreational
services. Climate change also has a significant impact on human health
by increasing the intensity of urban heat islands, amplifying the risk of
flooding and resulting in mortality due to the spread of infectious and
other diseases (cardiovascular and respiratory) (Chiabai et al., 2018).
In this study, the GWRmodel evaluated the spatial interaction between
the aforementioned climatic factors and ESs in Sundarbans (Fig. 2). The
climate change impact on ESs has a high variability with geographical
space as the corresponding climatic variables produced very high local
R2 values over the BOB region while they have lower regression esti-
mates over the northern region. This suggests that the region and
islands (both human-occupied and isolated) that are closer to the
coastal stretch have a higher climatic vulnerability than the landward
region. The strong association between the climatic and biophysical fac-
tors with ESs is observed throughout the study region which suggests
that these two factors can significantly determine the ESs provision of
an ecosystem. This also implies that climate change is the most critical
factor for the ESs changes in Sundarbans. Therefore, among the six rele-
vant controlling factors integrated into this study, the climate change is
considered to be the highest contributing elements, followed by bio-
physical, environmental stress, land degradation, socio-economic, and
developmental factors, which is in agreements with the findings of
Nelson et al. (2013) and Chiabai et al. (2018).

The Sundarban mangrove ecosystem provides many livelihood al-
ternatives and ecosystem services to the coastal communities living in
this region and contributes substantially to improving the overall
socio-ecological status of this deltaic ecosystem. Many livelihood op-
tions of this region, such as honey collection, crab collection, fishing,
aquaculture, and cultivation practices, will be directly or indirectly af-
fected by the prolonged climate change and the associated adversities.
This could be even more prominent when anthropogenic and develop-
ment factors would be aligned with the physical factors such as sea-
level rise (SLR), coastal erosion, increasing sea surface temperature
and salinity, coastal flood and storms, etc. It is also anticipated by earlier
research that the present biodiversity region of Sundarbans will be re-
duced from 60% to 30%, mainly due to sea-level rise and resulted in
the loss of mangroves and coastal land (CEGIS, 2006; Uddin et al.,
2013). Due to the loss of mangroves, it is expected that sediment dis-
charge and nutrient load of the riverine network will be affected, salin-
ity (both soil and water) will be increased, and the disproportion
between precipitation and evaporation will expedite the formation of
cyclones and storms. This would pose serious environmental and liveli-
hood threats tomillions of peoples living in this region. Additionally, ac-
cording to the study of CEGIS (2006) in Bangladesh Sundarbans, the
area suitable for Heritiera species (themost abundantmangrove species
of Sundarbans) would be decreased by 14% in 2050 (in 32 cm SLR sce-
nario) and by 45% in 2100 (in 88 cm SLR) from the base year of 2001;
while for Excoecaria species, the suitable area will be decreased by 7%
in 2100 (Uddin et al., 2013). Additionally, the monetary loss due to cli-
mate change would be much visible in the southern part of the
Sundarbans, wheremost people are dependent on the forest-based pro-
visioning and supporting services. Therefore, the formulation of effec-
tive policies, increasing adaptability, resilience, and promoting
alternative livelihoods for the coastal communities of the Sundarbans
are required to cope with the environmental problems pertinent to
this ecosystem.

As the prolonged climatic extremities have been witnessed in many
places of the world, it is expected that coastal storm surge/flood inten-
sities and frequencies will increase across the scale, especially in the
tropical coastal region, where climatic extremes designate severe
socio-economic and livelihood threats to billions of peoples located in
the coastal stretch in India, Bangladesh, China, Thailand, Malaysia,
Myanmar and other coastal countries (Brouwer et al., 2007; Douglas
et al., 2008; Mirza, 2011). The disturbance regulation service is one of
the key regulating services in the Indian Sundarbans. The natural coastal
habitats of the Sundarbans, including mangroves, inland wetlands,
coastal estuary, salt marshes, sand dunes, act as the first defense system
against the prevalent and frequent coastal storms and wave surges that
cause the exaggerated shoreline erosion and coastal flooding due to in-
creasing sea-level rise and lack of sediment and water inputs into river
system under the construction of Farakka Dam along the Hooghly river.
Strong protectionmeasures should be incorporated in the coastal storm
management policies for restoring the ecosystem of these natural habi-
tats. This can be done by promoting the soft engineering options pro-
vided by these natural habitats. Moreover, the soft engineering
supports provided by the natural habitats demand little ongoing main-
tenance costs, turning this option economically viable and cost-effective
(Nelson et al., 2013). In this study, a strong spatial agreement was ob-
served between the driving factors and ESs. Most of the regulating
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services, i.e., climate regulation, disturbance regulation, nutrient cycling,
raw material provision, water supply, and waste treatment services
have exhibited very strong synergic associations with climatic and bio-
physical variability, especially over the southern coastal region.

The nexus between the development factors, land degradation fac-
tors, socio-economic factors, and ESs were also evaluated (Figs. 2, 3, 4,
5). The development factors, represented by four major development
indicators such as educational facility, transport facility, infrastructure
facility, power usage facility, were considered as controlling factors for
spatial regression and spatial interaction modeling. The spatial associa-
tions between development factors/land degradation factors/socio-
economic factors and ESs were not uniformly distributed, as higher
local R2 valueswere evident over the southern region, and lower regres-
sion estimates were accounted in the northern part of the region. These
tendencies were reversed while the ESs derived from the economic val-
uation methods were taken as response variables in spatial regression
modeling. However, the results of this study show that thedevelopment
and socio-economic factors did not produce any strong (non)spatial as-
sociationwith the ESs. The results of the six regressionmodels and GDM
are in accordance with this finding. While the land degradation factors
represent the land fragmentation and connectivity of an ecosystem, it
exhibited a moderate to strong association with the ESs, especially the
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Fig. 5. The association between the driving factors and ESs, estimated from RDA and CCA.
ESV_BIOP = ESs derived from biophysical method; ESV_ECO = ESs derived from
economic method; ESV_HYB = ESs derived from hybrid method.
ESs calculated using the biophysical and hybrid valuation methods
(Table 4). The socio-economic factors incorporated in this study, such
as forest area, total unirrigated area, total irrigated area, pisciculture
area, pisciculture production, etc. unveils the socio-ecological status of
the region. The higher the socio-ecological stability, the higher the ESs
we observed. Perhaps, thismight have been the cause of having a higher
local R2 value over the southernmost administrative block of the
Sundarbans, which is mostly covered by forest and agriculture land,
while executing the spatial regression models between the socio-
economic/development factors and ESs.

The environmental limiting factors such as temperature stress,
water stress have significant impacts on the provision of ESs. Both spa-
tial regression and spatial interaction models have advocated a strong
(non)spatial association between the limiting factors and ESs. This asso-
ciation is more prominent over the southern blocks (Gosaba,
Patharpratima, Namkhana, Basanti, Kultali, Sagar), and lower local R2

values of the same are evident in the northern region. The outcome of
this test indicated that apart from the profound effects of climatic, bio-
physical, land degradation factors on ESs provision, the environmental
limiting conditions, which refer to both climatic, hydrological, and bio-
geochemical stress scalars, have a substantial impact on the ecosystem
service production.

There are uncertainties associated with themethods for ES quantifi-
cation and valuation. Among the threemethods, the biophysical and hy-
brid methods exhibited strong spatial accuracies (Fig. 2). The ESs
quantified using the economic method did not produce correlation
with those using biophysical and hybrid methods. These exceptions
could be due to the structural differences between the three valuation
methods. As a variety of modeling and calculation approaches were
adopted for each valuation method, it is obvious that there might be
some uncertainties and biases that exist in themodeling. Themethodo-
logical differences and uncertainties embedded in the valuation and
mapping of ESs manifest complications for the evolving sustainable ES
valuation framework and inclusion of the ES concept effectively in na-
tional capitals accounting. This also flags some issues in broadening
the relevant natural resourcemanagement policies for effective decision
making and policy implication (Crossman et al., 2012; Boerema, 2017;
Wong et al., 2015). Additionally, Crossman et al. (2012) stated that
the methodological issues that exist in ES valuation also turns the com-
modification (ecosystem service productions such as carbon offsets and
taxation, auction of ecological conservation, payment for ecosystem ser-
vices, banking of natural capitals such as wetland, forest) and trading of
(non)marketable ecosystem goods and services highly ambiguous as
the valuation markets require a certain clarity and transparency.

5. Conclusion

The interaction effects and complex nexus between the driving
forces and ESs supply in the Sundarbans region have revealed that cli-
mate change is the most crucial component of ES degradation. In
order to maintain the ecological stability and flow of multiple ESs
from this dynamic deltaic lobe of the Sundarbans, it is optimal to ana-
lyze the sensitivity and responses of natural capitals to any adversarial
effects. The series of spatial regression models have explicitly discussed
the spatially varying interaction among the natural and anthropogenic
forcing and ESs. The results of all six regression models reveal that the
socio-economic and development factors have weak tomoderate nega-
tive effects on ESs. The q statistics derived from the GDMmodel suggest
that the joint effects of the driving factors aremuch higher than their in-
dividual effects. Furthermore, this study has proposed a hybrid valua-
tion method, and it has been observed throughout the study that most
of the regression models produced a better estimate for the ESs derived
from the hybrid methods. The findings of this research could be useful
to the land administrators, environmentalists, policymakers for
adopting suitable land resource conservation and management plans
for strengthening and protecting the natural capitals, thereby
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improving the overall socio-ecological status of the region. This study
included the most suitable and identical driving factors, which were
found to have substantial positive or negative effects on ESs. There is a
scope for future work to improve themethods and approaches adopted
in this study.
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