
Integrated Environmental Assessment and Management — Volume 16, Number 5—pp. 773–787

Received: 27 February 2020 | Returned for Revision: 13 April 2020 | Accepted: 4 May 2020 773

Ecosystem Services

Identification of Conservation Priority Zones Using
Spatially Explicit Valued Ecosystem Services: A Case from
the Indian Sundarbans
Srikanta Sannigrahi,*† Francesco Pilla,† Bidroha Basu,† Arunima Sarkar Basu,† Qi Zhang,‡ Ying Wang,§
Pawan Kumar Joshi,|| Suman Chakraborti,# Luca Coscieme,†† Saskia Keesstra,‡‡§§ PS Roy,||||
and Paul C Sutton##
†School of Architecture, Planning, and Environmental Policy, University College Dublin, Richview, Dublin, Ireland
‡Frederick S Pardee Center for the Study of the Longer‐Range Future, Frederick S Pardee School of Global Studies,
Boston University, Boston, Massachusetts, USA
§School of Public Administration, China University of Geosciences, Wuhan
||School of Environmental Sciences (SES), Jawaharlal Nehru University, New Delhi, India
#Center for the Study of Regional Development (CSRD), Jawaharlal Nehru University, New Delhi, India
††School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
‡‡Soil, Water and Land‐use Team, Wageningen University and Research, Wageningen, the Netherlands
§§Civil, Surveying and Environmental Engineering, The University of Newcastle, Callaghan, Australia
||||System Analysis for Climate Smart Agriculture, Innovation Systems for the Dry Lands, ICRISAT, Patancheru, India
##Department of Geography and the Environment, University of Denver, Denver, Colorado, USA

ABSTRACT
Demarcation of conservation priority zones (CPZs) using spatially explicit models is the new challenge in ecosystem services

(ESs) research. This study identifies the CPZs of the Indian Sundarbans by integrating 2 different approaches, that is, ESs and
ecosystem health (EH). Five successive steps were followed to conduct the analysis: First, the ESs were estimated using
biophysical and economic methods and a hybrid method (that combines biophysical and economic methods); second, the
vigor–organization–resilience (VOR) model was used for estimating EH; third, the risk characterization value (RCV) of ESs was
measured using the function of EH and ESs; fourth, Pearson correlation test was performed to analyze the interaction between
ESs and EH components; and fifth, the CPZs were defined by considering 7 relevant components: ecosystem vigor, ecosystem
organization, ecosystem resilience, RCV, EH, ESs, and the correlation between EH and ESs. Among the major ecoregions of the
Sundarbans, the highest ESs value in economic terms is provided by the mangrove ecosystem (US$19 144.9 million per year).
The highest conservation priority score was projected for the Gosaba block, which is dominated by dense mangrove forests.
The estimated CPZs were found to be highly consistent with the existing biodiversity zonations. The outcome of this study
could be a reference for environmentalists, land administrators, researchers, and decision makers to design relevant policies to
protect the high values of the Sundarbans ecosystem. Integr Environ Assess Manag 2020;16:773–787. © 2020 SETAC
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INTRODUCTION
Ecosystem services (ESs) are the bundle of ecosystem

goods and services that provide benefits to human sub-
sistence and welfare (Costanza et al. 1997). In order to un-
derstand and communicate why ESs are so important, we
need to understand and provide a measure for their impacts
on local livelihoods (Wang et al. 2018; Zhang, Song et al.
2018). Ecosystem service values (ESVs), through proper
evaluation and quantification, could be a useful tool for land

administrators and policy makers to design and support
suitable land resource conservation and management plans
to strengthen and protect ecosystems and natural capital
and to improve the socioecological status of an ecological
priority zone (Costanza et al. 2014; Sannigrahi, Zhang, Joshi
et al. 2020).
Demarcation of conservation priority zones (CPZs) using

spatially explicit modeling has been the new challenge in ESs
research (Lin et al. 2017; Hou et al. 2018; Qin et al. 2019). In
most cases, traditional conservation strategies have focused
solely on species diversity, richness, and habitat conservation
(Brooks et al. 2006). Several studies have considered the ESs
approach to spatially define CPZs (Lin et al. 2017; Hou
et al. 2018; Qin et al. 2019). Accurate quantification of ESs
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could be relevant for integrating ESs into the decision making
for natural conservation policies (Burkhard et al. 2013;
Crossman et al. 2013). Challenges still remain in order to
include ESs values in decision making (Ruckelshaus et al.
2015). Therefore, it is essential to explore methods for in-
tegrating ESs and ESVs approaches into effective con-
servation practices to offer cost‐effective solutions to decision
makers and environmental practitioners.
Several studies have evaluated the effectiveness of ESs for

demarcating spatially explicit CPZs. Baral et al. (2014) sug-
gested that mapping and spatial quantification of ESVs are
highly effective in identifying ecologically sensitive regions.
The Baral et al. (2014) study also reported that conservation
assessment that relied solely on habitat conservation might
not be effective for conservation planning. Manea et al.
(2019) evaluated the usability of ESs‐based conservation
priority assessment for demarcating Marine Spatial Planning
(MSP) zones, which highlights the importance of spatially
explicit quantification of ESs in the planning and con-
servation of marine protected regions. Zhang, Xu et al.
(2018) found that both biodiversity and ESs valuation are
instrumental for the conservation of protected regions. The
authors had examined the collective effects of these 2
components for identifying the suitable conservation areas
for giant panda in China and found that the regions with
higher habitat suitability for giant panda are positively as-
sociated with the distribution of ESs. Scolozzi et al. (2014)
performed a Strengths Weaknesses Opportunities and
Threats (SWOT) analysis for evaluating the effectiveness
of ESs‐based conservation prioritization. Three biogeo-
graphical regions, that is, Alpine, Continental, and the
Mediterranean, were considered for this evaluation, and the
Alpine site was found to exhibit higher opportunities and
strengths compared to Continental and Mediterranean ex-
perimental sites (Scolozzi et al. 2014). Turner et al. (2012)
evaluated the flow of ESs and its association with the global
distributions of biodiversity, physical, and socioeconomic
causative factors and observed that the top 25% CPZs could
provide 56% to 57% of benefits in terms of necessary ESs.
The integrated cost–benefit analysis of the Turner et al.
(2012) study suggests that the aggregate benefits derived
from biodiversity conservation are 3 times the estimated
opportunity costs. Verhagen et al. (2017) mapped the ESs
demand and capacity of C sequestration, flood regulation,
air quality, pollination, and urban leisure services at multiple
spatial scales in the European region and suggested that
flow of ESs capacity or demand should be the key factor for
identification of ESs priority areas. Several other studies
have evaluated the effectiveness of ESs‐based conservation
zonation for water resources management (Fan and Shibata
2014), environmental policy and decision making (Izquierdo
and Clark 2012; Qu and Lu 2018), ecosystem health (EH)
and habitat quality assessment (Duarte et al. 2016), and soil
conservation and land degradation (Li et al. 2017).
Several methods have been developed in the last

2 decades to evaluate and quantify the spatially (in)explicit
ESVs at many ecosystem scales. Of these methods, the

benefits transfer approach proposed by Costanza et al.
(1997, 2014) has become the most popular due to its simple
adaptability and straightforward calculation. However, this
approach has proven to be ineffective in many cases while
explaining the spatial variation of ESVs because it is based
on spatially homogenous benefit transfer from source site to
experimental site (Sannigrahi et al. 2018). Broadly, the
quantification of ESs can be categorized into 2 types: 1) unit
price–based evaluation and 2) area‐based valuation. The
unit price method is suitable for the regional‐ and local‐level
ESs valuation. This method is based on a simple linear as-
sociation between ESs and several ecological components,
whereas the area value method is based on direct benefit
transfer approach and suitable for large‐scale assessments
(Fang et al. 2018). Furthermore, Kumar (2010) categorized
3 major groups of approaches for the valuation of ESs.
These include 1) direct market valuation approaches, for
example, market price approach, cost‐based approach
(damage cost, avoided cost, replacement cost, restoration
or mitigation cost), and production‐based approach (pro-
duction function and factor income); 2) revealed preference
approaches, for example, travel cost method and hedonic
pricing; and 3) stated preference approaches, for example,
contingent valuation method (willingness to pay, willingness
to accept), and payment for ecosystem services (Zhang et al.
2019), choice modeling and conjoint analysis, and group
valuation. However, none of these valuation approaches are
free from the expected uncertainties (information failure,
market failure, institutional failure) that exist in the valuation
process (Turner and Daily 2008; Tallis and Polasky 2009).

The main research question of the present study is this:
What is the relevance and potential for implementation of
ESs valuation approaches in identifying spatially explicit
CPZs of a natural reserve region with limited data avail-
ability? To address the research question, we defined
4 main research objectives: 1) to estimate the biophysical
and economic values of relevant ESs of the Sundarbans,
2) to evaluate the status and health of the ecosystem using
the spatially explicit vigor–organization–resilience (VOR)
model, 3) to evaluate synergies and trade‐offs between
EH and ESs, and 4) to identify the CPZs of the Indian
Sundarbans. In the present study, a substantial difference
between the biophysical and economic valuation ap-
proaches was observed. This means that the 2 valuation
methods tend to provide divergent perspectives for eco-
system service valuation, each of which should be asso-
ciated with uncertainties and biases. This could be a reason
for considering a variety of approaches and methods for
evaluating and quantifying spatially explicit ESs.

MATERIAL AND METHODS

Study area

The Sundarbans is known for its biodiversity and eco-
logical richness, which makes it one of the world's bio-
diversity hot spots. The Sundarbans mangrove is the world's
largest single intact mangrove forest (Mitra et al. 2012). Due
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to its ecological and environmental importance, this vibrant
ecosystem is designated as a Ramsar site by labeling this
ecosystem a “Wetland of International Importance” (https://
rsis.ramsar.org/ris/2370), and it was declared a United Na-
tions Educational, Scientific and Cultural Organization
(UNESCO) World Heritage Site in 1987 (https://whc.unesco.
org/en/list/798/). Additionally, the Sundarbans mangroves
are the world's largest coastal wetland ecosystem, which
lies in the convergence of the Ganga, Brahmaputra, and
Meghna rivers and covers nearly 10 000 km2 (62% in
Bangladesh and 38% in India). This ecosystem comprises
various physiographic features, including sand beaches,

tidal creeks and inlets, sand flats, mudflats, dunes, estuaries,
salt marshes, and mangrove littoral swamps (Figure 1). The
elevation of the Sundarbans ranges from 3 to 8m from sea
level (Ray et al. 2014). The dominant mangrove species
are Avicennia alba, Avicennia marina, and Avicennia offici-
nalis. The Indian Sundarbans comprised of 102 islands, of
which 54 are suitable for human habitation, 48 are not in-
habited (Mitra et al. 2012).

Data source and preprocessing

The open‐accessed Landsat archived remote sensing data
have been widely used for land use and land cover analyses
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Figure 1. Study area map shows the land use land cover (LULC) (A); elevation (m) (B); and major ecoregions of the Indian Sundarbans (C).
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(Woodcock et al. 2008; Liu et al. 2019). The geometrically
and radiometrically adjusted Landsat Multispectral Scanner
(MSS), Thematic Mapper (TM), Enhanced Thematic Mapper
(ETM), and Landsat Operational Land Imager (OLI), and
Thermal Infrared Sensor (TIRS) data products were used for
classifying the region into several ecoregions. For land‐use
land‐cover (LULC) classification and subsequent analysis, we
adopted supervised machine learning models including ar-
tificial neural network (ANN), Bayes, decision tree (DT),
gradient boosted tree (GBT), linear discriminant analysis
(LDA), k‐nearest neighbor (KNN), maximum likelihood clas-
sifier (MLC), random forest (RF), and support vector machine
(SVM). The classification of LULC, postprocessing, and ac-
curacy assessment of thematic layers are discussed in detail
in Sannigrahi, Chakraborti et al. (2019). The entire region
was classified into cropland, mangrove, water bodies (inland
wetland and coastal estuary), urban land, mixed vegetation,
and sand beach. The boundary clean and majority filter were
applied to remove isolated pixels from the classification
outputs. Time series Enhanced Vegetation Index (EVI) and
Normalized Difference Vegetation Index (NDVI) estimates
for 2000 to 2017 were approximated from MOD13Q1 16‐d
composites, which were retrieved from the University of
Natural Resources and Life Sciences, Vienna, Austria (http://
ivfl‐info.boku.ac.at/). The initial 16‐d MOD13Q1 NDVI/EVI
scenes were converted to annual units using the ArcPy py-
thon package module. The climatic variables, including
maximum temperature (ºC), minimum temperature (ºC),
average temperature (ºC), precipitation (mm), latent heat
(W ·m–2 · s–1), sensible heat (W · m–2 · s–1), incoming solar
radiation (W/m2), actual and potential evapotranspiration
(mm), surface runoff (mm), soil moisture (mm), vapor pres-
sure (kPa), vapor pressure deficit (kPa), and climate water
deficit (mm), were collected from TerraClimate (http://www.
climatologylab.org/terraclimate.html). The real values of
these climatic variables were retrieved based on their cor-
responding biophysical conversion factors. A spatially ex-
plicit Integrated Valuation of Ecosystem Services and
Tradeoffs (InVEST) model (Sharp et al. 2020), developed by
Stanford University, was used in the present study for bio-
physical quantification of ESs. The InVEST model uses maps
as an input variable and produces spatially explicit maps as
the outcome of the model. This model has been used ex-
tensively in mapping and valuation of natural goods and
services at multiple scales. The InVEST model generally
produces the estimate in both biophysical (e.g., tons of C
sequestered) and economic (e.g., monetary value of that
sequestered C) terms (Sharp et al. 2016). The input variables
for the InVEST model, including C pool, root depth, plant
available water content, soil texture, soil organic C, ele-
vation, and slope, were retrieved from the Food and
Agriculture Organization (FAO) Harmonized World Soil
Database v 1.2 (http://www.fao.org/soils‐portal/soil‐survey/
soil‐maps‐and‐databases/harmonized‐world‐soil‐database‐
v12/en/), National Bureau of Soil Survey and Land Use
Planning (NBSS&LUP) (https://nbsslup.in/), and Shuttle Radar
Topography Mission (SRTM) (http://srtm.csi.cgiar.org/).

Methodology

Quantification of ESs. In the present study, 3 groups of ap-
proaches, including biophysical, economic, and hybrid, were
adopted to quantify the biophysical and monetary values of
key ESs in the Sundarbans region. The hybrid ESs valuation
method proposed in the present study is an integration of
the biophysical and economic methods. Additionally, diverse
quantification approaches (e.g., spatially explicit biophysical
models, equivalent weight and value coefficient methods,
benefits transfer method, InVEST model) have been consid-
ered for quantification and valuation of ESs (Figure 2). Several
ESs, including biological control (BC), climate regulation (CR),
cultural (CUL), disturbance regulation (DR), genetic services
(GEN), gas regulation (GR), habitat service (HA), nutrient cy-
cling (NC), raw material production (RM), water supply (WS),
and waste treatment (WT), were considered for evaluation.
Additionally, using the InVEST module, the biophysical
values of C storage (CS), N export (N_Exp), P export (P_Exp),
sediment export (SED_Exp), and sediment retention (SDR)
services were calculated.

Estimating biophysical values of ESs. The biophysical values
of multiple ESs were calculated based on the modeling of
Net Primary Productivity (NPP). The NPP is the C bio-
geochemical process, and it denotes the amount of gaseous
C sequestered by green vegetation (Sannigrahi 2017). The
spatiotemporal NPP was estimated at the pixel level using
5 ecosystem models, including Carnegie‐Ames‐Stanford Ap-
proach (CASA) (Potter et al. 1993), Eddy Co‐variance Light
Use Efficiency (EC‐LUE) (Yuan et al. 2007), Global Production
and Efficiency Model (GLO‐PEM) (Prince and Goward 1995),
Moderate Resolution Imaging Spectroradiometer Model
(MOD17) (Zhao et al. 2006), and Vegetation Photosynthesis
Model (VPM) (Xiao et al. 2004). The biophysical values of BC,
CR, DR, GR, NC, RM, WS, and WT were quantified from the
results of NPP as well as other biophysical inputs (e.g., pre-
cipitation, evapotranspiration, runoff, elevation, slope, water
body occupancy ratio) (Barral and Oscar 2012). The per-
formances of the 5 NPP models were assessed to identify the
best model for the calculation of the biophysical values of
ESs. Proxies, such as C tax (Ricke et al. 2018), social cost of C
(Song et al. 2015; Song and Deng 2017; Ricke et al. 2018),
price of C (Song et al. 2015; Song and Deng 2017), price of O
(Song et al. 2015; Song and Deng 2017), cost for dam con-
struction (Barral and Oscar 2012; Kibria et al. 2017; Zhang
et al. 2017), price of nutrients (Ray et al. 2014; Kibria
et al. 2017; Ray and Jana 2017; ICAR‐IISS 2020), were used to
quantify the biophysical values of ESs. The biophysical esti-
mate of CS, N_Exp, and P_Exp, SED_Exp, and SDR services
were calculated using the InVEST model.

Estimating economic values of ESs. The economic values of
ESs were quantified using 5 successive steps: 1) determining
equivalent weight coefficient, 2) parameter adjustment and
rectification, 3) determining standard invariant equivalent
value factor, 4) dynamic correction and comparable
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economic valuation, and finally 5) estimating regional eco-
nomic service (ES) values using adjusted coefficients, which
have been discussed in detail in an earlier study (Sannigrahi,
Chakraborti et al. 2019). The global equivalent weights de-
veloped by Costanza et al. (1997, 2014) were adopted to
measure the adjusted equivalent weight coefficient of each
ES. Among all of the ESs, the food production service of
cropland is the most direct ES. Hence, the weight coefficient
of food production service of cropland was used as the base
for estimating the weight coefficients of the other ESs. Sev-
eral biophysical and climatic dynamic correction factors
(NPP, NDVI, crop yield, precipitation, fractional vegetation
cover [FVC], and NPP/NDVI) were used for adjusting the
global weight coefficients and estimating local‐ or regional‐
level ESs. The historical crop production and yield statistics
values of the Sundarbans were retrieved from district stat-
istical handbook, provided by the Department of Planning
& Statistics, Government of West Bengal (https://www.
wbpspm.gov.in/). Subsequently, the per‐unit economic
value of the food production service of cropland was quan-
tified, assuming that the projected monetary value of food
production service is one‐seventh of the real food pro-
duction (Xie et al. 2008). The monetary values of the other
ESs were projected based on the per‐unit values of food
production services of cropland. Additionally, several eco-
nomic dynamic factors, including Pearl's S‐shaped growth
curve (PGC) model (Fu et al. 2016), Engel coefficient (En),

inflation rate (IR), and Consumer Price Index (CPI), were also
used for adjusting price fluctuations and estimating the
economic values of ESs (Fei et al. 2016).

Estimation of ES values using a hybrid method. To address
and minimize the uncertainties in the valuation of ESs, the
present study proposes a hybrid valuation method, which is
an integration of existing biophysical and economic valu-
ation methods. Both normalized and absolute values of the
biophysical and economic ES values were considered for the
hybrid ESs valuation. The spatially explicit biophysical and
economic valuation methods are not free from predictable
biases and uncertainties. The biophysical valuation ap-
proach, which entirely depends on the quality of biophysical
(NPP, EVI, NDVI) and climatic (precipitation, temperature,
evapotranspiration) variables, is likely to be highly uncertain
because it depends on highly dynamic natural variables.
Without proper preprocessing, the measures would pro-
duce substantial biases in the calculation of ESs. Meanwhile,
the associated direct and indirect methods for the economic
valuation of ESs, such as contingent valuation, willingness to
pay, willingness to accept, hedonic pricing, travel cost,
damage cost, benefits transfer method, and statistical value
transfer model, are highly sensitive to price fluctuations,
socioeconomic status, and demographic characteristics of
the region.
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Figure 2. Methodological flowchart showing the linkages of components used in this research for delineating conservation priority zones of the Indian
Sundarbans.
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Estimation of EH. In the present study, EH was evaluated
based on 3 criteria: vigor (V), organization (O), and resilience
(R). Finally, the risk characterization values (RCVs) of
ESs were estimated using a function of EH and ESs
(Costanza 2012; Peng et al. 2015; Yan et al. 2016). In the
VOR model, V characterizes the ecosystem and biomass
richness and productivity, O refers to the landscape diversity
and connectivity, and R refers to the capacity of an
ecosystem in maintaining the structure and function in the
presence of external disturbances (Costanza 2012; Peng
et al. 2015; Yan et al. 2016). The formula of EH is

= × ×EH V O R ,3 (1)

where V=NPP (used as a proxy in the present study); the O
was calculated as

= × + × + × =
× + × + ×

+ × + × +

× + × +

× + ×

O 0.35 LC 0.35 LH 0.3 IC 0.1
AWMPFD 0.25 FN1 0.15 SHDI
0.1 MSIDI 0.1 CONT 0.1

FN2 0.05 CONNECT1 0.1

FN3 0.05 CONNECT2

, (2)

where LC= landscape connectivity; LH= landscape hetero-
geneity; IC= patch connectivity of ecologically important
landscape (forest, water, grassland); AWMPFD= area‐
weighted mean patch fractal dimension; FN1= landscape
fragmentation; SHDI= Shannon's Diversity Index; MSIDI=
Modified Simpson's Diversity Index; CONT= landscape
contagion index; FN2= fragmentation index of forest land;
CONNECT1= patch connectivity of forest land; FN3=
fragmentation index of water; and CONNECT2= patch
connectivity of water (Peng et al. 2015; Yan et al. 2016).
Resilience was calculated as follows:

( )( )= +
+ +

× ×
=

∑ fR 1
CS CN EVI

3
RC ,

n

i i
norm norm norm

1 1

(3)

where CSnorm, CNnorm, andEVInorm are C sequestration, curve
number, and enhanced vegetation index; fi is the area ratio
of the major ecosystem type i; and RCi refers to the eco-
system resilience coefficient (Kang et al. 2018).
Next, the RCV was calculated as

= ×RCV EH ESs . (4)

After that, using VOR estimates, EH, ESs (derived from the
hybrid method), and RCV, the CPZs for the Sundarbans re-
gion were estimated. For this purpose, the spatial cluster
and hot spots of the variables were estimated using local
indicators of spatial association (LISA) statistics.

Evaluation of synergies, trade‐offs, and spatial distribution
of ESs and EH components
Estimating synergies and trade‐offs. The spatial and non-
spatial synergies and trade‐offs among ESs and EH compo-
nents were evaluated using the Pearson correlation test at the
administrative scale (the 51 administrative blocks, represented

by numbers 0–50). The PerformanceAnalytics package for R
statistical software was used to calculate the Pearson corre-
lation matrix (Peterson et al. 2018). Both trade‐offs (negative
association, characterized by negative r‐value) and synergies
(positive association, characterized by positive r‐value) among
the variables were evaluated at P≤ 0.001, 0.01, and 0.05
significance levels. The trade‐off refers to a win–lose condition
when increases of 1 ES component decrease the provision of
another ES component and vice versa. The synergy refers to
the positive correlation between 2 components, that is, when
increasing 1 ES component would be effective for the incre-
ment of another ES component, and thereby yield a win–win
situation. A total of 51 sample points was generated for each
ESs and EH component.

Estimating spatial distribution of ESs. Global Moran's I
quantify the spatial autocorrelation of distributed features as
a whole, whereas the LISA assess location‐specific spatial
autocorrelation using local Moran's I (Anselin 1995; Fu
et al. 2014). Local Moran's I is mostly used to identify
the distribution of spatial clusters and spatial outliers
(Harries 2006):

σ
=

− ̅
[ ( − ̅)]

=

∑
≠

I
z z

w z z ,i
i

j j i

n

ij j2
1,

(5)

σ =
( − ̅ )

−

=∑ ≠ x X

n 1
,

j j i
n

j2 1,
2

(6)

where ̅z is the mean value of z ; zi is the value of the variable
at location i; zj is the value at location j ( ≠j i ); σ2 is the
variance of z ; and wij is the weight between zi and zj, which
can be defined as the inverse of distance. Weights can also
be determined using a distance band: Samples within a
distance band are given the same weights, whereas those
outside a distance band will get a weight of 0; n is the
sample number (Fu et al. 2014).

Identification of CPZs. In the present study, the CPZs of the
Sundarbans were identified using 2 approaches: ESs and
EH. Additionally, a hybrid method based on biophysical and
economic valuations of ESs was also proposed, which min-
imizes the valuation biases that exist in different valuation
methods. Afterward, using the ES values estimated through
this hybrid method, EH components (V, O, R, EH, RCVs), the
Pearson correlation coefficients, and the cluster and outliers
and hot and cold spot estimates derived from Moran's I, and
Getis‐Ord Gi*, CPZs were incorporated for demarcating
spatially explicit CPZs. All the 7 relevant components (ESs,
correlation estimates, RCV, EH, O, R, and V) were then
normalized, and the final CPZs score was calculated by
summing up the normalized values of all the 7 components.
Based on the final score, CPZs were categorized into very
high, high, moderate, low, and very low CPZs. The calcu-
lation was carried out at the administrative scale to validate
the findings with the established reports and scholarly
works.
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RESULTS AND DISCUSSION

Distribution and spatiotemporal changes of ESs

The spatial and nonspatial distribution of different ESs is
shown in Figure 3 and Supplemental Data Figure S1. The
monetary values of the ESs were evaluated using the
biophysical, economic, and hybrid valuation methods
(Figures 3A and 3B). Figures 3C, 3D, 3E, and 3F show the
values of ESs for the 6 major ecoregions, and the combined
results of the ESs and 6 LULC. For biophysical methods, the
mangrove regions have produced the maximum amount of
ESs, followed by cropland, mixed vegetation, coastal es-
tuary, inland wetland, and urban region (Table 1). The HA,

NC, and CR are the main ESs of mangrove, cropland, and
mixed vegetation regions, whereas the coastal estuary re-
gion is most important for its DR and GEN. Additionally, the
inland wetland ecosystem is primarily significant for pro-
ducing NC, CR, GEN, and DR services (Tables 1 and 2). For
all the major ecosystem types reported in the present study,
the maximum amount of ESVs is provided by the mangrove
ecosystem, illustrating the significance of natural reserve
ecosystems that could support a wide range of landscapes
and natural capitals, (such as forest and water bodies) which
have a substantial importance in order to produce the
marketable and nonmarketable natural goods and services
that are essential for subsistence and human well‐being

Integr Environ Assess Manag 2020:773–787 © 2020 SETACDOI: 10.1002/ieam.4287

Figure 3. Ecosystem service values of ESs (A), LULC (B) derived from biophysical, economic, and hybrid methods, (C) represent the ESV of different ESs,
(D) denotes the ESV of different ecosystem types, (E) shows the contribution of different ecosystem types to provide ESV, and (F) shows the range of ESV of
each LULC. BC= biological control; CE= coastal estuary; CL= crop land; CR= climate regulation; CUL= cultural; DR= disaster regulation; ESs= ecosystem
services; ESV= ecosystem service value; GEN= genetic service; HA= habitat service; IW= inland wetland; LULC= land use land cover; MAN=mangrove;
MV=mixed vegetation; NC= nutrient control; RM= raw material production; UR= urban; WS=water supply; WT=waste treatment.
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(Costanza et al. 2014; Keesstra et al. 2018; Sannigrahi, Joshi
et al. 2019). The present study has also shown that the
mangrove‐rich Sundarbans ecosystem is extremely im-
portant for the provision of key regulating services like DR,
CR, CS, WS, and WT. Ray et al. (2011) had quantified the
CO2 emission of the Indian Sundarban as 33 620Gg C per
year, which is equivalent to 123 385Gg CO2 per year and is
produced mainly from the community plant respiration of
coastal blue ecosystem of the Indian Sundarbans per year.
Ray et al. (2011) also observed that the net C storage of this
ecosystem is about 36 670Gg C per year, which is equal to
134 579Gg CO2. Therefore, approximately 11 194Gg CO2

is sequestered by the Indian Sundarbans every year and acts
as a net sink for CO2 that can have a significant impact on

regional C balance of the Bay of Bengal region (Akhand
et al. 2016; Rodda et al. 2016). However, the valuation ap-
proaches adopted in the present study considered only
tangible and realized benefits of the ecosystems but did not
include intangible benefits provided by the ecosystems; if it
had been so, the real values of such ESs would have
changed significantly (Kubiszewski et al. 2013). Additionally,
the Sundarbans is one of the most dynamic ecosystems in
the world, where several climatic and anthropogenic ex-
tremities, including floods, cyclones, coastal erosion, de-
struction of mangroves, and depletion of coastal and
maritime resources, are posing severe environmental and
socioeconomic threats to coastal communities of the Sun-
darbans (Giri et al. 2011; Sannigrahi, Zhang, Pilla et al. 2020).

Integr Environ Assess Manag 2020:773–787 © 2020 SETACwileyonlinelibrary.com/journal/ieam

Table 1. Biophysical ESVs estimated for 6 ecosystem units

ESs Mixed vegetation Cropland Coastal estuary Mangrove Inland wetland Urban

BC 1.29 3.68 0.11 0.10 0.48 0.14

CR 112.89 169.60 8.35 177.21 8.07 12.05

CUL 1.33 1.22 4.40 0.27 0.79 0.08

DR 3.78 19.81 70.03 35.18 9.03 4.42

GEN 85.33 257.61 30.08 25.75 10.81 8.87

HA 16.80 14.39 6.60 615.69 2.19 0.94

NC 108.36 161.19 17.99 577.18 10.86 9.29

RM 24.78 37.23 1.83 38.90 1.77 2.64

WS 10.95 38.24 3.04 26.38 2.07 1.27

WT 0.00 0.01 0.00 0.25 0.00 0.00

Total 365.52 702.97 142.43 1496.91 46.08 39.70

BC= biological control; CR= climate regulation; CUL= cultural; DR= disturbance regulation; ES= ecosystem service; ESV= ecosystem service value; GEN=
genetic services; HA= habitat service; NC= nutrient control; RM= raw material; WS=water supply; WT=waste treatment.

Table 2. Ecosystem service values estimated after aggregating biophysical and economic values for 6 ecosystem units

ESs Mixed vegetation Cropland Coastal estuary Mangrove Inland wetland Urban

BC 3.24 10.56 0.05 0.05 14.49 0.07

CR 59.76 193.49 69.84 95.01 11.37 21.72

CUL 14.48 0.61 8.10 0.13 30.34 0.04

DR 1.89 9.91 35.01 544.82 49.40 2.21

GEN 143.30 404.31 39.71 43.52 6.89 4.44

HA 109.03 7.19 29.90 1996.45 38.00 0.47

NC 54.18 80.60 9.00 293.37 33.05 4.65

RM 16.88 76.52 2.56 54.72 8.99 1.32

WS 10.81 133.49 1.52 142.55 7.61 0.63

WT 6.24 104.89 0.00 15974.27 45.32 0.00

Total 419.81 1021.56 195.69 19144.90 245.45 35.55

BC= biological control; CR= climate regulation; CUL= cultural; DR= disturbance regulation; ES= ecosystem service; GEN= genetic services; HA= habitat
service; NC= nutrient control; RM= raw material; WS=water supply; WT=waste treatment.
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Using the economic valuation methods, we have esti-
mated the ESs value of different natural capitals of the
Sundarbans (Figure 3, Supplemental Data Figure S1). The
mangrove regions have produced the maximum amount
ESs, followed by cropland, mixed vegetation, inland wet-
land, coastal estuary, and urban region (Figure 3, Supple-
mental Data Figure S1). The WT, HA, DR, and WS are the
major ESs of mangrove region. However, due to the in-
creasing level of physical and anthropogenic disturbances,
the natural dynamics and ecological stability of this eco-
system have been severely affected. Raha et al. (2012)
evaluated the impact of climate change on the Indian Sun-
darbans and found that both the coastal erosion and ac-
cretion processes accelerated during the research period
(1924–2008). This could be due to the deficiency of sedi-
ment influx in the downstream channel prompted by the
construction of Farakka barrage in the upstream channel.
The decreases of freshwater inputs into this estuarine river
system and the resulting increase in water salinity are
causing a reduction of phytoplankton and fish communities
in the Indian Sundarbans (Raha et al. 2012). In addition, due
to the anthropogenic intervention, especially in the fringe
region of the Sundarbans (Sagar Island and Lothian Island),
the concentration of dissolved inorganic N is significantly
higher than the other part of the deltaic lobe (Mandal
et al. 2013). Mondal et al. (2013) estimated that if the
mangrove litter biomass is reduced to 50%, the amount of
detritus will be decreased by 44% and 55% in Sagar Island
and Lothian Island. For the cropland region, GEN, WS, CR,
and WT functions are producing the maximum ESs in the
Sundarbans. The mixed vegetation region is most significant
for the provision of HA and GEN services. The CR, HA, and
GEN services are the key ES functions of the coastal estuary
ecosystem. Additionally, the WT and DR services are the key
ESs of inland wetland ecosystem in the Sundarbans
(Figure 3, Supplemental Data Figures S1 to S7).
The present study has adopted both biophysical and

economic methods to quantify the values of ESs, and sub-
stantial difference between these 2 valuation methods was
found (Figure 3A). The estimated differences were minimal
for CR, RM, GEN, BC, and CUL services, whereas substantial
difference was observed for WT, DR, HA, NC services
(Figure 3E). The spatial distributions of different ESs esti-
mated using hybrid, biophysical, and economic valuation
methods are described in Supplemental Data Figures S1,
S6, and S7. Among the selected ESs, the CR, DR, HA, NC,
RM, WS, and WT services were found to be at a maximum
over the mangrove forested region (Supplemental Data
Figure S1), whereas the BC, CUL, and GEN services were
found very high over the inland wetland and mixed vege-
tation region. Among the major ecoregions of the Sundar-
bans, the mangrove ecosystem was providing the maximum
amount of ESVs in terms of economic units (US$19 144.9
million per year), followed by cropland (1021.56 million per
year), mixed vegetation (419.81 million per year), inland
wetland (245.45 million per year), coastal estuary (195.69
million per year), and urban region (35.55 million per year).

Supplemental Data Figure S8 shows the normalized ESVs of
different key ESs at administrative scale. The highest con-
centration of ESs was observed at Gosaba (code 42), Pa-
tharpratima (code 37), Namkhana (code 4), Sagar (code 25),
and Kultali (code 8) blocks. These administrative units are
mostly covered by mangrove forests and water bodies.

Association between the biophysical and economic ESs

To evaluate the association between biophysical and
economic valuation methods, we performed a linear re-
gression analysis, and the results were represented by a 2D
kernel density plot (Figure 4). Among the 10 pairs of ESs, the
highest coefficient of determination values was observed for
HA service (R2= 0.75), followed by CUL and GEN services
(R2= 0.70), CR (R2= 0.57), WT (R2= 0.50), WS (R2= 0.46), DR
(R2= 0.40), BC (R2= 0.18), RM (R2= 0.15), and NC (R2=
0.08) services, respectively (Figure 4). However, in the
present study, we observed a substantial difference be-
tween the biophysical and economic valuation approaches.
This means that the 2 valuation methods tend to provide
divergent perspectives for ES valuation, each of which
should be associated with uncertainties and biases. There-
fore, the proposed approach would provide an alternative
view of estimating ESVs.
The biophysical method is based on spatially explicit

modeling, including InVEST, Artificial Intelligence of Eco-
system Service (ARIES) (Villa et al. 2014), and quantification
of ESs using the market values of different proxies (C tax,
social cost of C, price of O, price of C, price of food pro-
duction, cost of dam construction). This high level of de-
pendencies on proxy‐based valuation makes the biophysical
estimation highly sensitive to the selection of appropriate
proxies. Accordingly, the effective uses of most of the bio-
physical models and approaches are often limited for esti-
mating the biophysical values of ESs, including CS (t/ha), WT
(g/m3), and SDR (t/ha) services, whereas the economic val-
uation methods, including simple benefit transfer, expert‐
derived value transfer, statistically modeled value transfer,
and spatially explicit value transfer, have been used ex-
tensively for the estimation of monetary values of ESs.

Distribution of EH components

The distributions of the studied EH components, that is, V,
O, and R, and EH, were analyzed spatially, which are shown
in Supplemental Data Figure S9. Ecosystem V was mostly
concentrated over the Gosaba (code 42) and Kultali (code 8)
blocks, and partly in the northern part of the study region
(Basirhat, code 39; Haora, code 27; Minakhan, code 11). The
ecosystem O values were found to be at a maximum over the
central and northern region (Canning, code 29; Bhangar,
code 12; Sandeshkhali, code 6; Sonarpur, code 47; Rajarhat,
code 10; Minakhan, code 11). The ecosystem R and EH
values were found very high over the southern region
(Gosaba, code 42; Kultali, code 8; Namkhana, code 4; Pa-
tharpratima, code 37; Sagar, code 25; Mathurapur, code 24;
Kakdwip, code 50; Basanti, code 35), whereas comparatively
lower values were found over the northern and western part
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of the region. The southern part of the study region is mostly
covered by dense mangrove forests and estuarine land.

Synergies and trade‐offs between EH components and ESs

The RCV and EH components have shown a very strong
synergy with CS, CR GR, RM services, whereas a moderate

to weak synergy was observed between RCV and bio-
diversity management (BDM), NC, SDR services. A trade‐off
association was also observed between RCV and BC, DR,
N_Exp, P_Exp, and water yield (WY) services (Figure 5).
However, the ecosystem O component showed a different
association with the ESs. A strong to moderate synergetic

Integr Environ Assess Manag 2020:773–787 © 2020 SETACwileyonlinelibrary.com/journal/ieam

Figure 4. Association between the biophysical and economic ESs. BC = biological control; Biop= ecosystem services calculated using biophysical method;
CR= climate regulation; CUL = cultural; DR = disaster regulation; Econ = ecosystem services calculated using economic method; ESs = ecosystem services;
GEN = genetic service; HA = habitat service; NC = nutrient control; RM = raw material production; WS =water supply; WT =waste treatment.
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association was observed between O and BC, CUL, and
SDR services, whereas ecosystem O is found negatively
associated with the BDM, HA, N_Exp, NC, P_Exp, WT,
and WY services. Furthermore, the association between
ecosystem R and ESs was also analyzed. The R component
has exhibited a strong to moderate synergetic association
with P_Exp, N_Exp, WY, SDR, WT, RM, GR, HA, and
CR services (Figure 5). In continuation, the association be-
tween V and ESs were evaluated at different significance
levels. The positive correlation was found between the V
and CR, GR, RM, BDM, CS, HA, NC, and WT services
(Figure 5).
Among the 5 EH components, the RCV has produced a

very strong synergetic association with EH and V. In con-
trast, a weak correlation was detected between the RCV and
R, and no correlation was found between RCV and O. The
EH factor was strongly associated with RCV, V, and O, and it
had no statistically significant association with the R factor.
Regarding the O factor, it has a moderate synergy with the
EH factor and a strong trade‐off with the R factor. The V
factor is positively associated with all other EH factors,
except the O factor (Figure 5).

Spatial distribution of CPZs

The very high CPZs were projected for the Gosaba block
(code 42), which is mostly covered by dense mangrove
forest (Figure 6). The Sundarbans natural reserve region,
along with several wildlife sanctuaries, natural reserve for-
ests, and national parks, is also located in this administrative

block. Our spatially explicit CPZs are, therefore, perfectly
matched with the existing literature and highlight the
administrative zones and landscape that should be pro-
tected. Earlier studies (Sannigrahi, Chakraborti et al. 2019;
Sannigrahi, Joshi et al. 2019; Sannigrahi, Zhang, Joshi
et al. 2020; Sannigrahi, Zhang, Pilla et al. 2020) in this region
have revealed that the mangrove and water bodies (coastal
estuary and inland wetland) are the most sensitive ecosys-
tems among the major ecosystem types of the Indian
Sundarbans. To preserve the ecological stability of this
ecosystem, several conservation and protection initiatives
have been adopted by local stakeholders (forest protection
committees [FPCs] and forest directories [FDs]). However,
due to unawareness and methodological uncertainties, the
importance of this ecosystem for the provision of valuable
ESs and how these valuation estimates can be effectively
utilized for delineating the CPZs are seemingly untouched or
have not been substantially explored.
The high conservation priority scores have been esti-

mated for Patharpratima (code 37), Kultali (code 8),
Mathurapur I (code 30), Mathurapur II (code 24), Jaynagar I
(code 18), Jaynagar II (code 13), Basanti (code 35), Hingal-
ganj (code 16), Baduria (code 44), and Basirhat (code 38)
administrative blocks. The moderate priority score is ac-
counted for in Namkhana (code 4), Kakdwip (code 50), Kulpi
(code 48), Mandirbazar (code 9), Diamond Harbour (code 0),
Falta (code 31), Canning I (code 29), Bhangar I (code 17),
Bhangar II (code 12), Hasnabad (code 21), Deganga
(code 26), Basirhat II (code 33), Habra I (code 20), Gaighata
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Figure 5. Pearson correlation matrix depicts the directional interaction among the ESs and ecosystem health components. BC = biological control; BDM =
biodiversity management; CR = climate regulation; CUL = cultural; DR = disaster regulation; EH = ecosystem health; EO = ecosystem organization; GEN =
genetic service; GR = gas regulation; HA = habitat service; N_Exp = nitrogen export; NC = nutrient control; P_Exp = phosphorous export; RCV = risk
characterization value; RES = resilience; RM = raw material production; SED_E = sediment export; SED_R = sediment retention; WT = waste treatment;
WY = water yield.
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(code 28), and Swarupnagar (code 45) blocks (Figure 6).
Most of the administrative blocks that exhibited less green
cover and more urbanized areas have been categorized as
low priority zones. Such blocks are Magrahat I (code 19),
Budge Budge II (code 41), Bisnupur I (code 7), Bisnupur II
(code 2), Baruipur (code 22), Sonarpur (code 47), Canning II
(code 23), Sandeshkhali II (code 49), Rajarhat (code 10),
Barasat I (code 38), Barasat II (code 32), and Habra II
(code 15) (Figure 6). The remaining administrative blocks
(Sagar, code 25; Bagda, code 34; Bongaon, code 40; Bar-
rackpore I, code 5; Barrackpore II, code 1; Amdanga, code
43; Budge Budge I, code 46; Thakurpukur, code 3; Haora,
code 27; Minakhan, code 11; and Sandeshkhali I, code 6)
have exhibited a very low priority zonation score (Figure 6).
The Sundarbans region has gone through a series of

discourses for conservation and management of ESs, which
in due course, merits thoughtful attention for scientific en-
gagement and discussion. It is important to realize the
challenges faced by environmentalists and decision makers
for strengthening and protecting the natural capitals of this
ecosystem. Costanza (2012) discussed the need for modern
ecological engineering solutions in addressing socio-
ecological problems of natural reserve regions. In addition,
the author (Costanza et al. 2012) has stated that “The design
of healthy ecosystems, which may be novel assemblages of
species that perform desired functions and produce a range
of valuable ecosystem services sustainably.” This perhaps
implies that modern problems need a modern solution,

especially when designing the proper action plan for
conservation of natural resources.

Globally, mangroves are disappearing at an alarming rate
of 1% to 2% per year, which is much faster than other ter-
restrial and marine ecosystems such as tropical rainforests
and coral reefs (Alongi 2002, 2008; DasGupta and
Shaw 2013). For the Indian Sundarbans, nearly 150 000 ha of
mangrove forest cover has been converted to agricultural
land during the past 100 y (Giri et al. 2008, 2011, 2015;
Kathiresan 2010). Additionally, land conversion due to
shrimp cultivation is the second most important anthro-
pogenic factor of mangrove degradation in South and
Southeast Asia, including the Indian Sundarbans (DasGupta
and Shaw 2013). The growth of shrimp cultivation and as-
sociated activities are becoming economically lucrative and
viable livelihood options in the Indian Sundarbans as people
can get direct benefits from them. This trend is evident in
and around Patharpratima (code 37), Sandeshkhali (codes 6
and 49), Namkhana (code 4), and Kultali (code 8).

The current research has made a sincere effort to de-
marcate the ecosensitive zones of the Indian Sundarbans.
Many key components, including connectivity of the
ecological network, land‐use intensity, and flora or fauna
diversity, which should have been considered while delin-
eating the conservation priority areas, could be a direction
for future research. Also, the modeling approaches and ESs
valuation methods adopted in the present study are not free
from uncertainty and biases. Therefore, a proper discussion
is much needed for exploring the caveats that exist in ESs
quantification and modeling and also for its broader im-
plications to inspire future relevant studies.

CONCLUSION
The present study proposes a new integrated approach to

demarcate the spatially explicit CPZs of the Indian Sundar-
bans. The spatially explicit ESs value was quantified using
biophysical, economic, and hybrid valuation approaches.
Several ESs valuation approaches, including InVEST, equiv-
alent weight and value coefficient method, and benefits
transfer method, were utilized for quantification of ESs. The
main findings of the present study are reported as follows:

1) Among the major ecoregions of the Sundarbans, the
mangrove ecosystem is providing the maximum amount
of ESs value in terms of economic units ($19 144.9 million
per year), followed by cropland ($1021.56 million per
year), mixed vegetation ($419.81 million per year), inland
wetland ($245.45 million per year), coastal estuary
($195.69 million per year), and urban region ($35.55
million per year).

2) The very high conservation priority score is being pro-
jected for the Gosaba block (code 42), which is mostly
covered by dense mangrove forest. The Sundarbans
natural reserve region, along with several wildlife sanc-
tuaries, natural reserve forests, national parks, tiger re-
serve, et cetera, are also located in this administrative
block, thereby justifying the accuracy and effectiveness
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Figure 6. Conservation priority zonation of the Indian Sundarbans.
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of the ESs‐based conservation method proposed in the
present study.

3) Additionally, our spatially explicit conservation priority
score thus, to a large extent, matches with the current
knowledge and highlights the administrative zones and
landscape that should be protected to maintain the ge-
odiversity of the Indian Sundarbans.

4) The ESs‐based CPZs are thoroughly examined in the
present study and found to be highly effective in de-
marcating the ecosensitive zones of the Sundarbans. The
generic approach and methods proposed in the present
study can easily be replicated at any related ecosystem
across the world, especially for regions with limited
ground data availability. Additionally, all the models and
data used in the present study are open access and freely
available; therefore, the financial burden should not be a
case for scientific replication and reevaluation.

5) In the present study, we have observed a substantial
difference between the biophysical and economic valu-
ation approaches. This means that the 2 valuation
methods tend to provide divergent perspectives for ES
valuation, each of which should be associated with un-
certainties and biases. Therefore, the proposed approach
would provide an alternative view of estimating ESVs.

In the present study, we have made a sincere effort to
demarcate the ecosensitive zones of the Indian Sundarbans.
We hope the outcome of the present study could be a
reference for designing the relevant policies to protect the
biodiversity values of this vibrant ecosystem and many
others in the world.
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