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A B S T R A C T   

Since December 2019, the world has witnessed the stringent effect of an unprecedented global pandemic, 
coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2). As of January 29,2021, there have been 100,819,363 confirmed cases and 2,176,159 deaths reported. 
Among the countries affected severely by COVID-19, the United States tops the list. Research has been conducted 
to discuss the causal associations between explanatory factors and COVID-19 transmission in the contiguous 
United States. However, most of these studies focus more on spatial associations of the estimated parameters, yet 
exploring the time-varying dimension in spatial econometric modeling appears to be utmost essential. This 
research adopts various relevant approaches to explore the potential effects of driving factors on COVID-19 
counts in the contiguous United States. A total of three global spatial regression models and two local spatial 
regression models, the latter including geographically weighted regression (GWR) and multiscale GWR (MGWR), 
are performed at the county scale to take into account the scale effects. For COVID-19 cases, ethnicity, crime, and 
income factors are found to be the strongest covariates and explain most of the variance of the modeling esti
mation. For COVID-19 deaths, migration (domestic and international) and income factors play a critical role in 
explaining spatial differences of COVID-19 deaths across counties. Such associations also exhibit temporal var
iations from March to July, as supported by better performance of MGWR than GWR. Both global and local 
associations among the parameters vary highly over space and change across time. Therefore, time dimension 
should be paid more attention to in the spatial epidemiological analysis. Among the two local spatial regression 
models, MGWR performs more accurately, as it has slightly higher Adj. R2 values (for cases, R2 = 0.961; for 
deaths, R2 

= 0.962), compared to GWR’s Adj. R2 values (for cases, R2 
= 0.954; for deaths, R2 

= 0.954). To inform 
policy-makers at the nation and state levels, understanding the place-based characteristics of the explanatory 
forces and related spatial patterns of the driving factors is of paramount importance. Since it is not the first time 
humans are facing public health emergency, the findings of the present research on COVID-19 therefore can be 
used as a reference for policy designing and effective decision making.   

1. Introduction 

The coronavirus disease 2019 (COVID-19), caused by the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and first re
ported in December 2019 in Wuhan city of China, has soon become a 

new public health concern across the world (Ge et al., 2020; Jin et al., 
2020; Rumpler, Venkataraman, & Göransson, 2020; Sun & Zhai, 2020). 
The virus poses serious potential threats to the medical protection sys
tem all over the world (European Centre for Disease Prevention & 
Control, 2020; World Health Organization, 2020). As of January 29, 
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2021, there have been 100,819,363 confirmed cases and 2,176,159 
deaths reported (World Health Organization, 2020). Geography that 
includes both spatial locations and characteristics of the spatial de
terminants has played a key role in the early outbreak and transmitting 
the virus across the scale (Andersen, Nielsen, Simone, Lewiss, & Jagsi, 
2020; Sannigrahi, Pilla, Basu, & Basu, 2020, b). The spatial variability 
and clustered concentration of both COVID-19 mortality and morbidity 
in many countries have demonstrated a strong spatial dependency of the 
confounding factors (Desmet & Wacziarg, 2020; Ren et al., 2020; Zhang 
& Schwartz, 2020). Although several timely efforts (e.g., Luo, Yan, & 
McClure, 2020) have analyzed spatial heterogeneous patterns and un
even distributions of COVID-19 casualties, few studies have utilized the 
spatial time-varying dimension in spatial econometric modeling for 
analyzing geographic disparities in COVID-19 casualties in the United 
States (Sun, Matthews, Yang, & Hu, 2020). The present research, 
therefore, has made an effort to examine how spatial analysis can help 
with identifying the hotspots and vulnerable locations as well as 
exploring the spatial dependency of confounding factors that explain the 
overall casualties caused by COVID-19. 

Spatial regression models can be useful for quantifying the risk of 
disease progression in the communities (Desmet & Wacziarg, 2020; 
Ehlert, 2020; Xiong, Wang, Chen, & Zhu, 2020). Previous spatial 
epidemiological research noted a strong spatial time-varying effect of 
the confounding factors on virus outbreaks (Auchincloss, Gebreab, Mair, 
& Diez Roux, 2012; Chakraborti et al., 2020; Fitzpatrick, Harris, & 
Drawve, 2020; Kirby, Delmelle, & Eberth, 2017; Sannigrahi, Pilla, Basu, 
Basu et al., 2020). Of them, a few studies have focused on the spatially 
heterogeneous characteristics of the COVID-19 transmission (Bashir 
et al., 2020; Conticini, Frediani, & Caro, 2020; Sarwar, Waheed, Sarwar, 
& Khan, 2020; Xiong et al., 2020; Yao et al., 2020). The disproportionate 
burden of COVID-19 could be due to place-based characteristics that 
include cluster concentration and spatial aggregation of infected popu
lation and the proximity of social interaction (Sannigrahi, Pilla, Basu, 
Basu et al., 2020; Sun et al., 2020). Therefore, both characteristics of the 
spatial confounding factors and spatial interconnection between the 
places should be carefully considered while inspecting the factors that 
exacerbate the spread of disease and identifying communities vulner
able to the infection (Mansour, Al Kindi, Al-Said, Al-Said, & Atkinson, 
2021; Zhu et al., 2018). Hence, developing spatial models and under
standing the confounding effects of the variables is critical to reveal the 
spatial variation of virus transmission at any spatial or administrative 
scale (Ren et al., 2020; Zhang & Schwartz, 2020). 

Previous studies have utilized environmental, socio-economic and 
demographic factors to explain spatial variability of the COVID-19 in
cidents and discover the underlying risk of the outbreaks across multiple 
scales (Desmet & Wacziarg, 2020; Karaye & Horney, 2020; Qi et al., 
2020; Ren et al., 2020; Sannigrahi, Pilla, Basu, Basu, & Molter, 2020). 
Among the explanatory factors, several have been found strongly linked 
to the early transmission of the virus and the overall casualties caused by 
COVID-19. These key factors include traveling distance (Fortaleza, 
Guimarães, de Almeida, Pronunciate, & Ferreira, 2020), concentration 
of particulate matter (Bolaño-Ortiz et al., 2020), ethnic composition 
(Oztig & Askin, 2020; Thakar, 2020), income and socio-demographic 
factors (Sannigrahi, Pilla, Basu, Basu et al., 2020, 2020b), migration 
(Chen et al., 2020; Xiong et al., 2020), and air transport (Christidis & 
Christodoulou, 2020). Considering the country-specific analysis, in 
Wuhan (China) for instance, population density, the proportion of 
construction land, aged population density, tertiary industrial output 
per unit land, are found to be strongly associated with the COVID-19 
counts and the overall COVID-19 casualties (You, Wu, & Guo, 2020). 

In the United States, from the thirty-five explanatory variables 
covering various types of characteristics, four variables (i.e., income 
inequality, median household income, the proportion of black females, 
and the proportion of nurse practitioners) are found the key determining 
factors in COVID-19 casualties (Mollalo, Vahedi, & Rivera, 2020). In 
another analysis covering 2,814 United States counties and using 

COVID-19 data up to May 1, 2020, researchers found strong positive 
correlations between the socioeconomic factors such as proportions of 
elderly and COVID-19 incidence and mortality rate (Zhang & Schwartz, 
2020). Considering the February 19 and June 14, 2020 COVID-19 data 
in Iran, several infrastructure and climate factors (distance from bus 
stations and the minimum temperature of the coldest month) were 
found strongly associated with COVID-19 incidences and exhibited high 
variable importance in the analysis (Pourghasemi et al., 2020). The 
cross-country comparison of virus spread and their interaction with 
demographic, economic, and environmental parameters are limited. 
Among them, Sannigrahi, Pilla, Basu, Basu, Molter et al. (2020) focused 
on the European region, and carried out the spatial models to under
stand the spatially heterogeneous properties among the factors in 
different European countries; this study found that income and 
socio-demographic variables have the highest impact on COVID-19 fa
talities in Germany, Austria, Slovenia, etc. A similar association was 
found in Germany from another study (Ehlert, 2020). In cross-country 
analysis, several confounding factors, such as out-of-pocket expendi
ture, could significantly explain the global variation of COVID-19 ca
sualties in 175 countries. Among these factors, the age composition and 
out-of-pocket expenditure were found to be positively related to 
COVID-19 counts (Iyanda et al., 2020). In another study with a 
world-level analysis, Chakraborti et al. (2020) had identified few key 
determinants including air pollution, migration, economy, and de
mographic factor, which had strong positive correlations with 
COVID-19. 

Omitting the time variable in spatial models can lead to erroneous 
estimates and misleading conclusions. Moreover, assuming the time- 
independent and homogenous impact of the confounding factors on 
response variables (COVID-19 cases and deaths in the present study) 
may introduce ambiguity in parameter approximation and eventually 
produce unconvincing results. Therefore, the present research makes an 
effort to address the current research gap in spatial COVID-19 studies by 
conceptualizing time-dependent spatial regression models using open 
source data with information in the contiguous United States. The hy
pothesis of this study is framed as “the spatial association between the 
confounding factors and COVID-19 counts strongly depend on time; thus, 
space entity alone cannot fully explain the associations and the spreading of 
diseases in the contiguous United States”. The specific objectives of this 
study are to explore the overall associations between the explanatory 
factors and COVID-19 cases and deaths and examine local association 
between the explanatory drivers and COVID-19 incidences. The present 
study also develops dynamic spatial regression models for exploring the 
time-dependent local spatial association as well as measuring the rela
tive importance of variables with parsimonious regression models. 

2. Materials and methods 

2.1. Data collection and pre-processing 

This research utilized the most updated aggregated county-level 
datasets provided by Johns Hopkins University (Killeen et al., 2020). 
These datasets contain 348 relevant variables covering multiple do
mains, such as demography, education, economy, health care capacity, 
crime statistics, public transit, climate, and housing information 
(Table S1). Since the main aim of the present study is to establish a 
modeling framework to examine the space- and time-dependent asso
ciations between COVID-19 incidences and potential explanatory fac
tors, all the relevant variables were pre-processed to connect the 
observations to their corresponding county units through the unique 
Federal Information Processing Standard (FIPS) code. Each FIPS code 
contains five digits, with the first two digits referring to state informa
tion and the last three digits describing county information. The Johns 
Hopkins team retrieves information from various governmental and 
institutional sources, including the United States Census Bureau, United 
States Department of Agriculture (USDA) Economic Research Service, 
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the National Oceanic and Atmosphere Administration (NOAA), the As
sociation of American Medical Colleges (AAMC), Henry J. Kaiser Family 
Foundation (KFF), the Center for Neighborhood Technology (CNT), the 
Bureau of Justice Statistics, and Department of Justice (DOJ) (Killeen 
et al., 2020). The data also retrieved key information on the health care 
system at the county scale that indicates how a county’s health care 
system performed in handling COVID-19 counts. 

The daily COVID-19 counts, including confirmed cases and deaths, 
were obtained for the period of January 22 to July 26, 2020 from 
USAFacts1. The daily counts of COVID-19 cases and deaths were con
verted to cumulative sum for subsequent analysis and interpretation. 
The USAFacts team aggregates the most updated COVID-19 counts from 
various sources, including Centers for Disease Control and Prevention 
and state-level and local-level public health agencies. However, for most 
of the states, the USAFacts team gathers the daily county-level cumu
lative COVID-19 counts (positive cases and deaths) based on published 
tables, web dashboards, or PDF reports available on state public health 
websites through scraping or manual entry. The actual numbers 
(COVID-19 counts) reported in USAFacts sometimes may not exactly 
match with the statistics from the state public health organization re
ports. This can be due to the frequency in which the USAFacts are col
lecting and updating data is different from that of local governmental 
organizations. Additionally, there are a few states where up-to-date 
county-scale data is either not available on the public health website 
or data collection is not sufficiently frequent. For example, the updated 
COVID-19 counts in California and Texas are not available on the state 
public health websites. For these states, the USAFacts team extracted the 
latest available numbers from the county-specific public health 
websites. 

Daily air pollution data were collected from the OpenAQ data re
pository system for extracting five key air pollutants, including two 
kinds of particulate matter (PM2.5, PM10), Sulfur Dioxide, Nitrogen Di
oxide, and Carbon Monoxide. Daily concentrations of these atmospheric 
pollutants were converted to the monthly average unit for the exami
nation of their associations with COVID-19 casualties. Currently, the 
OpenAQ platform consists of 686 million air quality measurements, 150 
data sources, 13,000 locations, and 95 countries in their system, which is 
able to collect hourly air pollution concentration estimates from 
governmental and sensor sources. An R package, called “ropenaq: Ac
cesses Air Quality Data from the Open Data Platform OpenAQ”, was utilized 
to assess the large volume of data for the entire contiguous United States 
from January 22 to July 27 of 2020. The location wise air pollution data 
were further converted to raster surface using the “inverse distance 
weighting” interpolation method. Finally, the mean air pollution con
centration of each county was calculated using zonal statistics as a table 
function in ArcGIS Pro v2.6. 

2.2. Variable selection and dimensionality reduction 

Dimensionality reduction and critical information extraction from 
datasets are crucial for regression modeling and effective decision 
analysis. This research employed a stepwise forward regression 
approach as a tool to separate the key variables from sets of unorganized 
variables. A total of nine groups (i.e., crime, demography, education, 
employment, ethnicity, pollution, health, migration, and climate), which 
were assumed to have both synergistic and trade-off associations with 
COVID-19 counts, were formed. Subsequently, key variables were 
extracted from each group based on Variable Inflation Factor (VIF) and 
model variability score, the latter of which is characterized by the co
efficient of determination (R2) and adjusted coefficient of determination 
(Adj. R2). For the category of crime, totally 16 variables were incorpo
rated into the modeling; for the other categories, a total of 14 

(demography), 29 (education), 6 (employment), 72 (ethnicity), 63 (health
care), 5 (pollution), 7 (migration), and 4 (climate) variables were consid
ered, respectively (see detail in Table S1). Multiple collinearity tests, 
including VIF, R2 change, correlation coefficient, probability and t-sta
tistics, were executed to detect the models’ redundant variables. High 
collinearity would be evident in the model if the VIF value was greater 
than 10; therefore, all the filtered variables considered in the regression 
modeling were scrutinized to eliminate the redundancy in model 
parametrization. Followed by stepwise forward regression, the enter 
stepwise regression method was performed to measure the VIF value of 
each explanatory variable to ensure that the multicollinearity was 
entirely eliminated. The final parsimonious models that relied on fewer 
parameters and at the same time explained the maximum model vari
ances with less uncertainty were parameterized for each category 
regarding both COVID-19 cases and deaths. These processes of variable 
selection and dimensionality reduction part were conducted in SPSS 
V26. 

2.3. Spatial regression 

2.3.1. Global spatial regression 
Spatial regression models have been used extensively in the COVID- 

19 research across multiple spatial scales (Guliyev, 2020; You et al., 
2020). Among all the available global spatial regression models, we used 
Ordinary Least Square (OLS), Spatial Error Model (SEM), and Spatial Lag 
Model (SLM) for measuring the global associations between the 
explanatory factors and COVID-19 counts at the county scale. The OLS 
model can be conceptualized as follows: 

yi = β0 + βxi + εi (1)  

Where yi is the COVID-19 case or death counts at county i, β0 is the 
model intercept, β is the slope parameter; xi is the selected independent 
variable(s) at county i; εi is the error term at model estimates. The global 
OLS assumes to have spatial stationarity across the scale, and therefore, 
also hypothesizes that a model conceptualized for a particular area can 
be applied effectively to other areas of interest (Fang, Liu, Li, Sun, & 
Miao, 2015). According to Anselin and Arribas-Bel (2013), the global 
OLS has fundamental assumptions: the observation in the feature space 
does not vary with space and therefore should be independent in nature, 
and the residual model errors should not be correlated (Oshan, Smith, & 
Fotheringham, 2020). 

The Spatial Lag Model (SLM) has an assumption of spatial de
pendency between the explanatory and response variables in feature 
space and conceptualizes the global regression by incorporating spatial 
dependence attributes in the modeling process. The SLM also assumes to 
have spatially lagged dependent variable in the model estimation, which 
can be ensured by the spatial dependence test resulted from OLS. If the 
determinant factors, tested by Moran’s I (error), Lagrange Multiplier 
(lag) and Robust LM (lag), exhibited statistically significant estimates at 
a defined probability level, then one should reconsider the model se
lection process and go for SLM as a replacement for OLS. The SLM can be 
formulated as: 

yi = β0 + βxi + ρWiyi + εi (2)  

Where ρ is the spatial lag component; Wi contains spatial weights 
(spatial weights matrix in a row format). The spatial weight matrix was 
generated using multiple approaches, including the contiguity based 
methods (Queen contiguity and Rook contiguity) and the distance based 
methods (Euclidean distance, Arc distance and Manhattan distance). 
The contiguity-based weight was approximated using the first order of 
contiguity. The county unique identifier number was utilized as a base 
for weight calculation. Since the accuracy and performance of all the 
global regression models strongly rely on spatial weights, we adopted 
both contiguity and distance-based weights for comparing the results at 
various parameter setups. The reduced version of the SLM can be 

1 Link: https://usafacts.org/visualizations/coronavirus-covid-19-spread-map 
/ 
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expressed as: 

Y = A− 1Xβ + A− 1ε (3)  

Where A=I-ρW; I refers to the conformable identity matrix; A− 1 is the 
spatial multiplier effect or Leontief inverse (Anselin, 2002; Lambert, 
Brown, & Florax, 2010). This inverted A matrix distinguishes this model 
from other spatial regression models as it gets feed-back/-forward ef
fects of shocks between the defined spatial location and eventually 
makes the model sufficiently flexible to process spatial non-linearity 
(Lambert et al., 2010). 

The Spatial Error Model (SEM) is an extension of global models that 
fundamentally stands on the assumption of spatial dependence in the 
residual error of OLS (Chi & Zhu, 2008; Fang et al., 2015; Guliyev, 2020; 
Song, Du, Feng, & Guo, 2014; Yang & Jin, 2010). The SEM posits that 
spatial autocorrelation among regression residuals is thus evident. Two 
standard spatial dependence tests, Lagrange Multiplier (error) and 
Robust LM (error), were executed to ensure statistical significance in 
spatial dependency in error terms, specified as follows. 

yit = xitβ + μi + εit (4)  

εit = λWεt + νit (5)  

Where λWεt is the spatial error term; λ denotes the autoregressive factor; 
νit refers to the random error term, which is normally conceptualized to 
be independent and ideally distributed in feature space; εit refers to the 
spatially uncorrelated error term (Guliyev, 2020). The SEM consists of 
two error terms, Wεt and εit. The spatial dependence test derived from 
OLS suggested a statistically significant spatial dependency among the 
observations for SLM and SEM. To provide multiple perspective of 
model estimations, this study considered all the three standard global 
spatial regression models for modeling and subsequent interpretation. 
Meanwhile, the spatial dependence test showed that both LM (lag and 
error) and Robust LM (lag and error) exhibited the statistical signifi
cance estimates. Therefore, both SEM and SLM were utilized to assess 
the synergies and tradeoffs between COVID-19 counts and associated 
factors at the county scale. When estimating the global models, both 
dependent and independent variables were converted to cumulative 
sum units. Additionally, the global associations between the variables 
were assessed for all the seven sub-components for capturing the indi
vidual effect of each sub-component on COVID-19 counts over the 
feature space. 

2.3.2. Local regression 
In many real-life cases, the general global assumptions and spatial 

stationarity among the observations in feature space could be ineffective 
and thus produce inelastic and biased estimates at the local scale. Since 
the main objective of this research is to establish predictive spatial 
models at the local scale, two most used local spatial regression models, 
Geographically Weighted Regression (GWR) and Multiscale GWR 
(MGWR), were employed for local spatial regression modeling and 
result interpretation. The GWR model is developed following Toddler’s 
first law of geography, “everything has some relationship with others, 
but near things are more related compared to distant things”. In GWR, 
each observation in feature space can vary and hence be associated with 
locally varying coefficients of the regression parameters. This addition 
of local spatial context in GWR modeling favors exploring the spatial 
dependency among the parameters. GWR can be defined as: 

yi = βi0 +
∑M

j=1
βijXij + εi , i = 1, 2, …, N (6)  

Where yi is the dependent variable (COVID-19 case or death counts) in 
county i; βi0 refers to the regression intercept; βij refers to the indepen
dent regression parameter; Xij is the value of the jth regression param
eter; εi refers to the regression error. 

Although GWR models have been embraced as a solution for global 
spatial stationarity in regression estimates, the same has been suffered in 
cases when a constant and straightforward bandwidth is not able to 
detect the spatial non-stationarity at varying bandwidths across the 
feature space. To address this problem, Fotheringham, Yang, and Kang 
(2017) and Oshan, Wolf et al. (2019) proposed a multiscale and multi 
bandwidth GWR, which allows exploring the local relationships among 
the varying factors across spatial scales by computing shifting band
width based on the distributions of observation. MGWR can be defined 
as: 

yi =
∑M

j=1
βbwjXij + εi , i = 1, 2, …, N (7)  

Where βbwj refers to the differential bandwidth at feature space. The rest 
is the same as discussed in GWR. 

2.4. Variable importance 

Machine Learning models have been used extensively in measuring 
feature importance in multi-parameter models. This research utilized a 
supervised machine-learning algorithm, Random Forest, for spotting the 
key explanatory factors in the models. Random Forest models (Breiman, 
2001), fundamentally based on bootstrap aggregating of decision trees, 
can minimize the unexplained variance of models and thus improve 
prediction accuracy (Altmann, Toloşi, Sander, & Lengauer, 2010). 
Random Forest models have been utilized for many domain-specific 
studies, such as gene expression-based cancer classification (Okun & 
Priisalu, 2007), biology of ageing (Fabris, Doherty, Palmer, De Mag
alhaes, & Freitas, 2018), remote sensing land cover mapping (Ma et al., 
2017; Zhang, Yang, Wang, Zhan, & Bian, 2020; Zhang, Wang et al., 
2020), screening underlying lead compounds (Cao et al., 2011), Struc
ture damage detection (Zhou, Zhou, Zhou, Yang, & Luo, 2014). In this 
study, we measured the variable importance based on the overall ca
pacity of the variables to explain the total model variances. Relative 
Importance and normalize importance scores were also computed for 
each variable to verify the predictive accuracy of the models and the 
individual contribution of each variable to the overall model 
performances. 

2.5. Experimental design 

In this study, we structured the entire analysis into a few sequential 
and logical steps (Fig. 1). The global and local spatial regression analysis 
has been carried out through four separate models: 

2.5.1. Model 1: global regression model considering static dependent and 
independent variables 

Model 1 was conceptualized for conducting global regression anal
ysis between COVID-19 counts and the explanatory factors. The daily 
COVID-19 observations from January 22 to July 26 were converted to 
cumulative sum for changing the nature of the data from dynamic to 
static. Only the final filtered variables for cases and deaths were 
considered in Model 1. Group-wise assessment was not considered in 
Model 1. The final selected variables, 6 for cases and 6 for deaths, had 
exhibited acceptable VIF scores. This suggests that the multicollinearity 
problems in the model appeared not evident for all the multi-parameters 
regression models. All the global models, including OLS, SEM and SLM, 
were conducted using the GeoDa and GeoDa Space software. The first 
order Queen and Rook contiguity was applied for spatial weight esti
mation. The distance-based approach was utilized for generating the 
spatial weights of the observations. Specifically, the Euclidian distance 
method was adopted for distance-based spatial weight calculation. 
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2.5.2. Model 2: local regression model using static dependent and 
independent variables 

Model 2 was developed by incorporating both static independent and 
static dependent variables into the modeling process. Local GWR and 
MGWR modeling was undertaken to explore the local correlation and 
association between the explanatory and response variables. Both GWR 
and MGWR were performed with the MGWR software package (Oshan, 
Li, Kang, Wolf, & Fotheringham, 2019). For Model 2, only the final 
filtered variables (6 for cases and 6 for deaths) were taken as indepen
dent variables. Using these variables, seven parameters local regression 
models were developed for COVID-19 counts, with the cumulative sum 
values accounted. 

2.5.3. Model 3: group-wise local regression model using static dependent 
and independent variables 

Model 3 was conceptualized after incorporating group-wise (crime, 
demography, education, employment, ethnicity, health, and migration) 
variables into the modeling process. Using the stepwise forward and 
enter regression method, the filtered variables with VIF smaller than 4 
for each group was identified. Among the seven major groups, a total of 
two variables (county population agency report crimes and ARSON), 
one variable (female age 85+), two variables (less than a high school 
diploma 2014–2018 and bachelor’s degree or higher 2014–2018), three 
variables (unemployed 2018, median household income 2018, Median 
household income percent of state total 2018), two variables (HBAC_
MALE and NH_FEMALE), two variables (Geriatric Medicine and Pre
ventive Medicine), and three variables (Population estimate 2018, 
domestic migration 2018, and R international migration 2018), were 
selected for crime, demography, education, employment, ethnicity, 
health, and migration, respectively, for developing the local regression 
models regarding COVID-19 cases. Similarly, for COVID-19 deaths, 
totally two variables for crime (Robbery, Motor vehicle thefts), one 
variable for demography (female age85+), one variable for education 
(bachelor’s degree or higher 2014− 18), three variables for employment 
(unemployed 2018, median household income 2018, median household 
income percent of state total 2018), two variables for ethnicity (HBA 
Female, BA Female), one variable for health (endocrinology diabetes 
and metabolism specialists (2019)), and four variables for migration 
(Pop estimate 2018, domestic migration 2018, R international migration 
2018, and R domestic migration 2018), were considered. 

2.5.4. Model 4: dynamic local regression model using dynamic dependent 
and static independent variables 

In Model 4, the monthly COVID-19 cases and deaths were chosen to 
be the dependent variables, while the annually averaged static group 

variables were considered to be the independent variables. The monthly 
sum values of COVID-19 cases and deaths were derived for March, April, 
May, Jun, and July. A total of ten (five for cases and five for deaths) 
multi-parameter local spatial regression models were developed for 
exploring the dynamic associations between the response and the 
explanatory factors. The final filtered variables (six for cases, including 
ARSON, median household income 2018, median household income 
percent of the state total 2018, HBA male, domestic migration 2018, R 
international migration 2018; six for deaths, including median house
hold income 2018, median household income percent of state total 
2018, HBA Female, domestic migration 2018, R international migration 
2018, and R domestic migration 2018) were incorporated for the dy
namic local regression modeling. 

The adaptive bi-square spatial kernel weighted method was 
employed for approximating the kernel bandwidth for GWR and MGWR 
models. The default golden bandwidth search approach was chosen for 
computing uniform (GWR) and locally varying (MGWR) bandwidths. 
Among the different optimization criteria, AICc, AIC, BIC, and CV, the 
AICc approach was considered for selecting the optimal bandwidth over 
feature space. Local correlation diagnostics, including condition number 
(CN), local spatial VIF, local variance decomposition proportions (VDP), 
were computed for evaluating the local collinearity among the obser
vations and parameters. Bandwidth confidence intervals were also 
measured at different levels of probability to ensure reliable spatially 
varying bandwidths, derived from MGWR. 

3. Results 

3.1. Spatial patterns of COVID-19 cases and deaths in the contiguous 
United States 

Spatial distributions and patterns of COVID-19 cases and deaths per 
10,000 people in the contiguous United States is shown in Fig. 2. Mul
tiple spatial clusters of simultaneously high numbers of cases and deaths 
are formed, which exhibit an unequal and heterogeneous distribution of 
COVID-19 counts across the counties. Among the clusters, four main 
clusters can be identified throughout the entire study period. The first 
cluster is formed over the North-Eastern coastal region, covering Mas
sachusetts, Washington D.C., Maryland, Connecticut, Pennsylvania, and 
New Jersey, as well as part of New York (New York City in particular). 
The second cluster is observed in the South-Eastern region, which covers 
states of Mississippi, Alabama, Georgia, South Carolina, North Carolina, 
and Florida. The third cluster is detected in the Great Lakes region – 
Michigan, Wisconsin and Illinois, centered at Chicago of Illinois, one of 
the largest cities in the country. The last is located in the South-Western 

Fig. 1. Flowchart of the research methods and data analysis procedures in detail.  
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region including southern California, Arizona, New Mexico (north
western part), and Colorado is also notably among the areas with high 
numbers (Fig. 2). 

3.2. Association between explanatory factors and COVID-19 cases and 
deaths 

3.2.1. Model 1: static global regression analysis 
Three global regression models, OLS, SLM and SEM, reveal the global 

and spatial non-stationary associations between the explanatory factors 
and the numbers of COVID-19 cases and deaths (Table 1). 

For COVID-19 cases, the coefficient of determination (R2) statistics, 
which denote the overall model strength and robustness, are measured 
as 0.78, 0.80, and 0.80 for OLS, SLM and SEM, respectively. The spatial 
dependence diagnostics criteria for the OLS model, namely LM Lag and 
LM error, are found statistically significant, thus indicating the 
requirement of more appropriate and relevant global models, such as 
SLM and SEM (Table S2). The AIC value, which denotes the overall 
model accuracy and parsimonious character of the models, is shown to 
be the lowest (most relevant) for SLM, followed by OLS and SEM. This 
suggests that the SLM model can be a more relevant global regression 
model with a better explanation of the model variability. Regarding the 

Fig. 2. Bivariate choropleth map demonstrates the county wise distribution (per 10,000 population) of COVID-19 cases and deaths from January 22 to July 26, 2020.  

Table 1 
Global regression estimates derived from OLS, SLM, and SEM.  

Variable 

Cases 

Ordinary Least Square Spatial Lag Spatial Error 

Coefficient t-Statistic Probability Coefficient z-Statistic Probability Coefficient z-Statistic Probability 

Case — — — 0.34 23.34 0.00 — — — 
CONSTANT − 120958 − 8.49 0.00 − 54546.7 − 4.1 0.00 − 103165 − 6.02 0.00 
ARSON 825.14 14.88 0.00 1073.06 21.2 0.00 1291.49 23.27 0.00 
MHHInc 2.27559 5.36 0.00 − 0.04 − 0.1 0.92 2.32 3.40 0.00 
MHHIncPer 224.50 0.78 0.43 633.62 2.43 0.02 20.76 0.05 0.96 
HBACM 62.27 52.79 0.00 46.78 39.3 0.00 44.04 35.04 0.00 
DomMig − 22.42 − 20.13 0.00 − 21.33 − 20.94 0.00 − 22.37 − 20.73 0.00 
RIntMig 274.51 0.17 0.86 − 392.91 − 0.27 0.78 − 87.65 − 0.06 0.95 
Lambda — — —— — — — 0.55 26.04 0.00 
R2 0.76 0.80 0.80 
Adj. R2 0.76 — — 
F 1611.37 — — 
P 0.00 — — 
AIC 83,825 83325.90 83458.30 
SIC 83867.30 83374.30 83500.60  

Deaths 
Death — — — 0.73 56.08 0.00 — — — 
CONSTANT − 9136.95 − 5.65 0.00 332.33 0.29 0.76 1988.94 1.02 0.30 
MHHInc 0.29 6.27 0.00 − 0.05 − 1.48 0.13 − 0.13 − 1.69 0.09 
MHHIncPer − 48.05 − 1.50 0.13 28.54 1.28 0.19 88.23 1.83 0.06 
DomMig − 3.91 − 37.32 0.00 − 2.82 − 37.14 0.00 − 2.73 − 36.2 0.00 
RIntMig 1106.60 6.47 0.00 510.21 4.29 0.00 250.68 2.00 0.04 
RDomMig 123.34 3.78 0.00 142.51 6.28 0.00 81.82 3.02 0.00 
LAMBDA — — — —— — — 0.81 63.64 0.00 
R2 0.36 0.69 0.69 
Adj. R2 0.36 — — 
F 349.83 — — 
P 0.00 — — 
AIC 70200.90 68324.50 68429.20 
SIC 70237.10 68366.80 68465.50 

Notes: MHHInc – Median household income, MHHIncPer – Median household income percent, DomMig – Domestic Migration, RIntMig – Rate of International 
Migration, HBACM – Not Hispanic, Black or African American alone or in combination male population, RDomMig – Rate of Domestic Migration, ARSON – Arson. 
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correlations of the explanatory variables2, ARSON, MHHInc, 
MHHIncPer, and HBACM have positive correlations with the number of 
COVID-19 cases. Among these four covariates, HBACM is found to have 
the most statistically significant relationship with the number of cases, 

given that its t-/z-statistic is the highest among the three models (52.79, 
39.3, and 35.04 for OLS, SLM, and SEM, respectively). The next with 
substantial significant coefficients is ARSON, with its t-/z-statistics being 
14.88, 21.2, and 23.27 in OLS, SLM, and SEM, respectively. MHHInc and 
MHHIncPer are found to have smaller significance values. The former is 
statistically significant (at the 5% level) only in SLM, while the latter is 
statistically significant (5% level) in OLS and SEM. Meanwhile, DomMig 
is found negatively (statistically significantly) correlated with COVID-19 
cases in all three models. Last, RIntMig shows statistically insignificant 

Table 2 
Group wise GWR and MGWR estimates computed from COVID-19 cases and deaths.  

Factors 
Cases 

R2 Adj. R2 Adj. alpha 
(95 %) 

Adj. critical t value 
(95 %) 

AIC AICc BIC  

GWR MGWR GWR MGWR GWR GWR GWR MGWR GWR MGWR GWR MGWR 

Crime 0.96 0.953 0.954 0.95 0 3.577 − 333.214 − 272.611 − 197.511 − 241.079 2240.615 1014.878 
Demography 0.935 0.93 0.927 0.925 0 3.612 989.264 973.424 1065.608 1002.018 2954.972 2201.44 
Education 0.961 0.958 0.955 0.953 0 3.572 − 395.974 − 388.113 − 265.737 − 316.194 2129.215 1522.801 
Employment 0.96 0.963 0.953 0.955 0 3.54 − 220.113 − 362.583 − 33.805 − 158.134 2758.259 2744.779 
Ethnicity 0.953 0.952 0.946 0.946 0 3.572 136.66 81.321 266.864 171.804 2661.55 2211.106 
Health 0.412 0.439 0.332 0.398 0 3.542 7915.288 7450.479 8017.685 7482.009 10172.44 8737.93 
PopMig 0.964 0.962 0.957 0.957 0 3.552 − 469.484 − 574.647 − 263.696 − 462.762 2647.13 1778.057 
All Variables 0.964 0.969 0.954 0.961 0.001 3.473 − 133.397 − 737.655 238.838 − 434.883 3930.356 2971.075  

Deaths 
Crime 0.936 0.941 0.927 0.934 0 3.566 1077.624 701.324 1202.174 782.08 3550.934 2719.931 
Demography 0.892 0.887 0.879 0.879 0 3.612 2555.903 2460.028 2632.247 2490.847 4521.611 3733.372 
Education 0.779 0.781 0.762 0.77 0 3.515 4577.562 4401.507 4612.928 4417.641 5938.388 5331.019 
Employment 0.948 0.953 0.938 0.944 0 3.54 646.627 334.34 832.936 538.789 3624.999 3441.702 
Ethnicity 0.925 0.926 0.914 0.918 0 3.546 1542.145 1303.461 1647.646 1361.208 3831.098 3025.062 
Health 0.936 0.939 0.929 0.932 0 3.607 909.58 755.337 982.54 828.208 2833.558 2678.189 
PopMig 0.98 0.98 0.975 0.977 0 3.549 − 2090.17 − 2484.22 − 1759.22 − 2371.52 1768.129 − 123.531 
All Variables 0.964 0.97 0.954 0.962 0.001 3.472 − 138.548 − 731.431 230.621 − 358.146 3910.451 3337.357  

Fig. 3. Local associations between the confounding factors and COVID-19 incidences derived from GWR and MGWR. Model strength and spatial interactions of the 
parameters were demonstrated by local R2, intercept, and residual. 

2 The explanatory variables have different units with different value ranges, 
hence their coefficients are not comparable; the associated t-statistics (OLS) and 
z-statistics (SLM and SEM) instead can be compared in terms of the significance 
level of the associations. 
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associations with the cases, although the associations differ across the 
models. 

Moving onto the number of COVID-19 deaths, the R2 values are 0.36, 
0.69, and 0.69 for OLS, SLM, and SEM, respectively. The AIC value is 
found to be the lowest in SLM, compared to those in OLS and SEM, 
indicating that the SLM model performs better under the given modeling 
framework. To interpret the explanatory variables, DomMig, RIntMig, 
and RDomMig are significantly associated with the number of deaths for 
all three models, and their associating directions are consistent. Spe
cifically, RIntMig and RDomMig covariates are positively correlated 
with deaths, while DomMig (the one with the highest significance level 
measured by t-/z-statistics) negatively. As for MHHInc and MHHIncPer, 
however, the correlations between MHHInc and deaths are observed 
statistically significant in OLS and SEM, but the correlating directions 
are inconsistent between the two models of OLS and SEM; MHHIncPer is 
found to be significantly associated with deaths in only SEM and their 
relating direction is positive. 

3.2.2. Model 2: static local regression analysis 
The (M)GWR-derived local spatial heterogeneity of the determinant 

factors for COVID-19 cases and deaths are statistically and spatially 
displayed in Table 2 and Fig. 3, respectively. These numbers and figures 
collectively demonstrate the spatial variability of the local model at the 
county scale in the contiguous United States. Local R2 estimates for both 
local regression models, MGWR and GWR, show high degrees of spatial 
agreement. The counties, for which the highest R2 (i.e., R2>0.90) values 
are derived, form spatially clustered patterns across the country. The 
high values of local R2 are concentrated over the Wisconsin-Indiana- 
Michigan region, as well as several parts of states of Texas, California, 
Mississippi and Arkansas. The lowest R2 scores are found in the Northern 
and North-Western states (Montana, Washington, Oregon, Wyoming), 
Southern states (New Mexico) and North-East coast region (North 

Carolina and Georgia). For COVID-19 deaths, the spatial patterns of 
high, moderate and low R2 values appear similar to those of the COVID- 
19 cases. Among the two local spatial regression models, MGWR per
forms more accurately, as it has slightly higher Adj. R2 values (for cases, 
R2 = 0.961; for deaths, R2 = 0.962), compared to GWR’s Adj. R2 values 
(for cases, R2 = 0.954; for deaths, R2 = 0.954). Also, AICc values of the 
MGWR model (for cases, AICc = − 434.883; for deaths, 
AICc = − 358.146) are found much lower than those of GWR (for cases, 
AICc = 238.888; for deaths, AICc = 230.621), as shown in Table 2 and 
Fig. 3. 

3.2.3. Model 3: group-wise static local regression analysis 
The spatial associations between different groups (crime, de

mographic, education, employment, ethnicity, health and migration) 
and COVID-19 cases and deaths are depicted in Figs. 4 and 5. Among the 
seven groups, six groups viz. demography, crime, education, ethnicity, 
employment, and population migration show strong similarities in terms of 
their spatial patterns of local R2. The highest local R2 values 
(R2 =>0.90) are found in the Southern and South-Western states, 
mainly Texas, Arizona, California, Utah; in the Eastern United States, or 
the Wisconsin-Michigan-Indiana-Illinois region; in the tri-state area of 
Mississippi-Arkansas-Alabama. In contrary, the health factor exhibits a 
different association with the COVID-19 numbers. High local associa
tions between the health factor and the COVID-19 cases are found in the 
Colorado-Utah and New Hampshire areas. For all groups, low spatial 
associations are found in states of Montana, North Dakota, Idaho, Ore
gon. Based on the R2 and AICc values, the population migration factor is 
found to be the most critical component with the highest local estimates 
(R2 = 0.96, AICc = − 462.76), followed by education and crime. A similar 
spatial association is detected between the explanatory factors and 
COVID-19 deaths across the counties. High local associations are found 
over the South, South-Western United States (states of Texas, New 

Fig. 4. Local effects of the driving factors (Demography, Crime, Education, Ethnicity, Employment, PopMig, and health) on COVID-19 cases at county scale derived 
from GWR and MGWR. 
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Mexico, Arizona, and California) and the East Central states (Wisconsin, 
Michigan, Indiana, and Illinois). The Population and migration factors 
explains the maximum model variability (R2 = 0.98 and 
AICc = − 2371.52), followed by an order of employment, crime, health, 
ethnicity, demography, and education (Table 2). 

3.2.4. Model 4: dynamic local regression analysis 
Spatial and temporal associations between the final six selected 

factors and COVID-19 counts are presented in Figs. 6 and 7, and Table 3. 
Totally ten (five for cases and five for deaths) local regression models 
reveal local associations between the explanatory factors and COVID-19 
counts in each of the five months, namely March, April, May, June, and 
July. High spatial associations between the explanatory variables and 
the response variables are found in states of Texas, New Mexico, Mis
sissippi, Tennessee, Kentucky, Indiana, Illinois, Wisconsin and Michigan 
(R2>= 0.90). In April and May, high spatial associations are found in 
Florida and California. In June and July, Arizona, Nevada, Oregon, 
Idaho states exhibit high spatial associations, characterised by large 
local R2 values. On the contrary, low spatial associations are observed in 
Washington, Oregon, Idaho, Montana, North Dakota, and South Dakota. 
For COVID-19 deaths, the local association follows a similar pattern as 
observed for the cases. In March, a high spatial association is seen in the 
Wisconsin and Illinois states. In the later months, high spatial associa
tions are shifted to multiple locations, such as Texas, California, Utah, 
Idaho, Wyoming region, Arkansas, Mississippi, Tennessee. On the con
trary, low spatial associations are found in the northern (i.e., Montana 
and North Dakota) and eastern states (i.e., Florida, Georgia, and South 

Carolina). All the dynamic models demonstrate the superiority of 
MGWR, as it is found to be a well-suited model for the local regression 
analysis throughout the study (Table 3, Figs. 6 and 7). 

3.3. Variable importance 

The levels of Relative Importance of the selected variables (final 
filtered variables, six for cases and six for deaths) measured by the 
Random Forest machine-learning model are presented in Fig. 8. For 
COVID-19 cases, among the variables, the highest level of Relative 
Importance is found for HBACM (44.31 %), followed by DomMig (15.56 
%), ARSON (12.38 %), RIntMig (10.53 %), MHHIncPer (5.22 %), and 
MHHInc (3.7 %), respectively (Fig. 8a). For COVID-19 deaths, the HBAF 
explains the maximum variances, and therefore, the highest RI score 
appears in HBAF (26.56 %), followed by DomMig (13.23 %), RDomMig 
(8.07 %), MHHInc (6.84 %), RIntMig (5.88 %), and MHHIncPer (0.76 
%), respectively (Fig. 8b). 

4. Discussion 

It has been nearly one year since the outbreak of COVID-19 started in 
Wuhan (China) and spread across the globe. The situation yet remains 
globally elusive as many countries have witnessed the re-emergence of 
COVID-19 incidents. Among all the countries, the United States is facing 
the most critical challenge in flattening the curve with urgent needs for 
more effective and appropriate control measurements. To inform the 
policy-makers at both national and state levels, understanding the 

Fig. 5. Local effects of the driving factors (Demography, Crime, Education, Ethnicity, Employment, PopMig, and health) on COVID-19 deaths at county scale derived 
from GWR and MGWR. 
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explanatory drivers and related confounding factors with spatial pat
terns and is of paramount importance. Timely studies have done much 
work of doing so (e.g., Beria & Lunkar, 2020; Hu, Roberts, Azevedo, & 
Milner, 2020; Rahman et al., 2020). However, this may not uncover the 
full picture since most of the factors change over time, namely being 
time-variant variables. The present study contributes to forwarding the 
knowledge of the outbreak by examining a set of factors over space and 
across time. Specifically, the most relevant variables are teased out from 
a large group of potential factors for explaining the COVID-19 cases and 
deaths at the county level, as well as for each month covering a 
five-month study period (Table 4). 

Choosing the best models when taking into account spatial and 
temporal features have always been a crucial point in spatial epidemi
ological research. Previously, several methodological approaches have 
evolved to capture the influence of explanatory variables on the 
response variables in the epidemiological study (Bashir et al., 2020). 
Among these are Spearman’s, Pearson’s and Kendall’s Correlation Co
efficient, Ordinary Least Square regression (Méndez-Arriaga, 2020), 
Poisson regression, Distributed Lag Nonlinear Model (Runkle et al., 
2020), cluster-based analysis (Andersen, Harden, Sugg, Runkle, & 
Lundquist, 2021), spatial lag model, spatial error model (Sun et al., 
2020). These models are mainly global models in nature and therefore 
have proven ineffective to capture the local or spatial patterns between 
explanatory and response variables. 

Based on the present research, notably, the overall regression models 
reveal that population migration, as indicated by domestic migration 
and the rate of international migration, is highly correlated with the 
numbers of COVID-19 cases and deaths. The move of people across 
continents internationally is accompanied with high risk of virus spread, 
as the air traveling means by its nature increases the likelihood of 
person-to-person COVID-19 transmissions (Zhang, Yang et al., 2020; 
Zhang, Wang et al., 2020). Given this evidence, air flight restrictions 
could be effective in undermining the virus spread, which is in line with 
the conclusion of positive associations between travel restrictions and 
COVID-19 spread from previous findings (Christidis & Christodoulou, 
2020), although this involves trade-offs between air-transporting public 
health and social-economics risks (Cotfas, Delcea, Milne, & Salari, 
2020). The other population moving variable, domestic migration, is 
found to be negatively related to numbers of both cases and deaths, 
which may be because that the redistribution of population from high 

density areas (e.g., megacities) to low population density areas (e.g. 
mountainous suburban regions) can diffuse the infected people while 
decreasing the frequency of person-to-person contact. A study suggests 
that residents from New York City, especially those in high wealth sta
tus, tend to flee the city to lower physical exposure to COVID-19 (Coven 
& Gupta, 2020). Apart from domestic migration and population flows 
that have been recorded during the outbreak, the intra/inter city and 
county transport connectivity plays a crucial role in spreading the dis
ease especially at the early transmitting phase. Although this study in
cludes both domestic and international migration into the assessment, 
the explicit role of transport network in transmitting the virus spatially is 
not focused. It should be noted that this relationship is based on the 
overall regression model, lacking heterogeneity over time and space. 
Socioeconomically, median household income at the county level is 
shown to be positively related to COVID-19 spread, as it indicates that 
the larger cities and higher population densities with more burden of 
virus transmissions. 

Interestingly, when viewing different time periods (monthly from 
March to July) as revealed from the dynamic local regression analysis, 
there exists high spatial heterogeneity in how the explanatory variables 
are associated with COVID-19 cases and deaths. Such heterogeneity is 
dynamic over time, which is also supported by the better performance of 
MGWR than GWR (Figs. 6 and 7). In the early phase of the COVID-19 
outbreak (mainly in March), associations between the potential factors 
and the infected numbers in most regions have not been well manifested 
except for the Chicago-centred Great Lake region and the Tennessee- 
Arkansas-Mississippi region (Fig. 6c). However, since April, several 
prominent hotspots of such correlations have been discovered including 
the states of California and Florida as well as many regions in the middle 
east part of the country (Fig. 6d, g, h, k). These regions identified as 
hotspots have characteristics of high population densities and hence the 
outbreak outcomes are more likely to be explained by the selected fac
tors, particularly the migration-related variables of domestic migration 
behaviours. This implication again demonstrates the importance of 
controlling people mobility as effective measures to combat the virus 
spread by the government in high populated states (Badr et al., 2020), as 
those actions taken in other countries including China (Kraemer et al., 
2020). In terms of COVID-19 deaths, the spatial patterns of the modeling 
outcomes also begin to exhibit high explanatory powers over large scales 
after April and remain stable during April-July, covering most of the 

Fig. 6. Time-varying effects of the confounding factors on COVID-19 cases based on GWR and MGWR.  
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Fig. 7. Time-varying effects of the confounding factors on COVID-19 deaths based on GWR and MGWR.  

Table 3 
Month wise GWR and MGWR estimates for cases and deaths.  

Months 
Cases 

R2 Adj. R2 Adj. alpha (95 
%) 

Adj. critical t value (95 
%) 

AIC AICc BIC  

GWR MGWR GWR MGWR GWR GWR GWR MGWR GWR MGWR GWR MGWR 

March 0.886 0.887 0.858 0.87 0.001 3.447 3290.311 2854.937 3588.543 2974.945 6971.588 5284.201 
April 0.931 0.944 0.914 0.932 0.001 3.447 1719.785 943.653 2018.018 1169.966 5401.063 4195.497 
May 0.953 0.962 0.941 0.953 0.001 3.447 541.379 − 141.82 839.612 158.405 4222.657 3550.403 
Jun 0.966 0.971 0.956 0.964 0.001 3.473 − 332.63 − 939.287 40.276 − 631.086 3731.492 2796.307 
July 0.974 0.976 0.966 0.97 0 3.49 − 1077.61 − 1533.93 − 647.896 − 1217.58 3246.505 2245.248  

Death 
March 0.855 0.912 0.844 0.897 0.002 3.161 3262.754 2180.349 3297.051 2343.071 4602.697 4977.473 
April 0.957 0.965 0.945 0.957 0.001 3.472 371.277 − 470.549 741.026 − 224.624 4420.234 2905.75 
May 0.959 0.969 0.95 0.961 0.001 3.42 − 11.612 − 677.245 229.337 − 360.743 3333.698 3102.754 
Jun 0.963 0.969 0.953 0.96 0.001 3.472 − 120.738 − 586.839 249.011 − 212.922 3928.219 3482.117 
July 0.962 0.966 0.951 0.957 0.001 3.472 37.51 − 372.678 407.259 − 6.848 4086.467 3657.341  

Fig. 8. Relative influence of the variables utilized for developing parsimonious regression models.  
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contiguous United States (except for a few regions such as northern 
California and northern New York). These results confirm that the 
selected factors of migration and household economic status can be 
useful for understanding the deaths caused by COVID-19 across counties 
and states during the study period. 

Although the United States is equipped with best healthcare facilities 
in the world, the high-level response to the pandemic has been argued as 
inadequate and leading to “surprisingly” resurgence of COVID-19 cases 
in for example California3. Currently, despite the authorization of vac
cines, the most effective measures to protect people from virus spread 
and minimize exposure risk are keeping social distances, wearing masks, 
and high frequency of washing hands (Badr et al., 2020). At the state 
level, local governments have been sufficiently vigilant to anticipate the 
situations and have taken preventive and protective measures (e.g. 
implementing anti-contagion policies) beyond federal guidance to 
minimize the potential damage. These government-imposed contain
ment policies include, for instance, large event bans, school closures, 
and mandating social distances, which could reduce the growth of new 
cases (Courtemanche, Garuccio, Le, Pinkston, & Yelowitz, 2020). State 
travel restrictions as well as quarantine rules for out-of-state visitors 
have been put into practices by many states such as Vermont4. Educa
tional institutions transferred from in-person classes to online meetings, 
or otherwise designed protocols specifying different categories of stu
dents/staff/faculty members, regular testing, restricted public room 
usages, etc. 

However, effort has been regarded as seemingly being put in vein 
based on the possible rebounding trend of newly found cases5. Given the 
critics based on the fact that the contiguous United States has the size of 
confirmed cases far more than any other places, policy-makers have 
been placed on a verge of taking critically adaptive and learning actions 
by referring to successful examples. China, the world’s second largest 
economy (after the United States), has put tremendous resources for 
controlling virus spread (primarily through city lockdown), which was 
reported as effective as potentially prevented hundreds of thousands of 
cases outside Hubei province (World Health Organization, 2020). 
Challenges such as those rooted in difference in political systems are 

admittedly persistent when learning from the way in which China 
respond to the virus crisis, yet quick actions as the Chinese government 
has taken should be undoubtedly encouraged as the priority by other 
countries (Kupferschmidt & Cohen, 2020). With more evidence accu
mulated for testing the underlying forces of COVID-19 spread, it is ur
gent to call for taking serious and sophisticated consideration by the 
federal government of socioeconomics and demographics especially 
population migration at the county or state level in addition to physical 
protection at the individual level. Without taking these temporally and 
spatially dynamic factors into account, the COVID-19 mitigation out
comes and the future of public health of the country in response to the 
pandemic would remain uncertain and risky. 

The findings in the present studies are generally in agreement with 
previous investigations, meanwhile not only adding values to the 
existing knowledge of COVID-19 spread in the United States but also 
possessing international relevance for combating the crisis worldwide. 
Consistent with what have been previously found, several (e.g., de
mographic, economic) factors have played key role in determining the 
casualties incurred by COVID-19 across countries. Bashir et al. (2020) 
showed that minimum temperature and average temperature are greatly 
related to the spread of COVID-19 spreading in New York city. Apart 
from that, specific humidity are found positively related with COVID-19 
in four cities – New Orleans, LA; Albany, GA; Chicago, IL; Seattle, WA 
(Runkle et al., 2020). Different socio-economic factors such as median 
household income equality are also found to be determining drivers of 
COVID-19 related casualties (Mollalo et al., 2020). In addition, de
mographic profile of the health care professional (over 55 years old 
population) is found substantially correlated with the disease (Dowd 
et al., 2020). Economic profile of the communities including unem
ployed population and existence of socio-economic disparities, s also 
found to be one of the key regulating factors of COVID-19 casualties in 
the United States. The present study, however, did not find any signif
icant relationships between climate, air pollution and COVID-19 cases or 
deaths (Fig. S2). This finding is in line with the observation of Mollalo 
et al. (2020). 

This research has explored local and global spatial associations be
tween the explanatory factors and COVID-19 casualties at the county 
scale in the contiguous United States. This study adopts many relevant 
approaches and methods to allow multiple-perspective model estimates, 
which can further be used as a reference for similar research interest and 
policy design. Still, there exist unavoidable uncertainties and biases both 
in parameter approximation and model design. Cumulated COVID-19 
deaths and cases were used as a dependent variable in the spatial 
models. Though, we consider the latest COVID-19 counts (COVID-19 

Table 4 
Changes in Local R2 values in different months.  

R2 range Case  

March April May June July  

GWR MGWR GWR MGWR GWR MGWR GWR MGWR GWR MGWR 

0 - 0.34 379 851 167 362 104 311 76 214 41 145 
0.34 - 0.66 384 553 300 413 366 403 219 321 133 185 
0.66 - 0.79 391 449 378 462 541 410 420 384 224 304 
0.79 - 0.85 347 277 356 409 306 320 352 313 243 281 
0.85 - 0.89 349 341 337 397 333 321 303 308 263 299 
0.89 - 0.93 465 358 492 419 452 511 428 401 447 394 
0.93 - 0.96 347 161 427 253 387 428 438 468 519 509 
0.96–1.00 447 119 652 394 620 405 873 700 1239 992 
Death 
0 - 0.34 878 63 538 80 414 45 358 17 264 11 
0.34 - 0.66 892 414 642 102 680 62 575 60 512 45 
0.66 - 0.79 643 501 575 178 559 177 547 130 511 122 
0.79 - 0.85 367 420 351 325 302 270 348 201 418 227 
0.85 - 0.89 57 316 243 319 304 321 253 287 262 260 
0.89 - 0.93 186 449 192 421 281 391 330 376 325 411 
0.93 - 0.96 31 504 193 336 233 379 280 454 328 475 
0.96–1.00 55 442 375 1348 336 1464 418 1584 489 1558  

3 Website: https://www.latimes.com/opinion/story/2020-07-02/u-s-was-pe 
rfectly-equipped-to-beat-coronavirus-federal-government-failed  

4 Website: https://accd.vermont.gov/covid-19/restart/cross-state-travel  
5 Websites: 1) https://www.cnn.com/videos/politics/2020/04/12/anthony- 

fauci-polls-november-rebound-jake-tapper-sotu-vpx.cnn; 2) https://coronaviru 
s.jhu.edu/testing/individual-states 
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datasets from January 22 to July 26, 2020, was collected) for the 
modeling, there is high chance to have different estimates if the pro
posed models are performed considering different time frame datasets. 
To clearly understand this uncertainty, we compare our modeled esti
mates with Mollalo et al. (2020) observations; this study has conducted 
the analysis considering 90 days of aggregated COVID-19 data. While, in 
the present research, we consider 348 variables and sort out few final 
uncorrelated variables for the explanation of COVID-19 cases and 
deaths, respectively, after processing nearly 184 days of data (both 
aggregated and daily COVID-19 counts were considered). The final 
filtered variables identified in our study has not matched perfectly with 
others’ estimation. This can be due to the difference in time frame taken 
between Mollalo et al. (2020) (90 days of COVID-19 data) and our study 
(184 days of COVID-19 data). Moreover, in our study, we consider seven 
groups of factors (crime, demography, education, ethnicity, employ
ment, health, and population & migration) for the modeling and sub
sequent interpretation. The causal effects of the other factors, such as the 
lockdown date, the strictness of lockdown (partial or complete), re
strictions on social gathering and human mobility, have not been 
explored in the present research, which can be an issue for future 
research. 

5. Conclusion 

The present research aims to explore the local and global associations 
between explanatory factors and COVID-19 counts in the contiguous 
United States with local and global spatial regression and machine- 
learning models. To capture the time varying effects of the potential 
factors on COVID-19 counts, several dynamic local parsimonious models 
have been conceptualized. Among the confounding factors, crime, in
come, and migration are found to be strongly associated with COVID-19 
casualties, and hence explain the maximum model variances. Interest
ingly, when viewing different time periods (monthly from March to 
July) as revealed from the dynamic local regression analysis, there exists 
high spatial heterogeneity in how the explanatory variables are associ
ated with COVID-19 cases and deaths. Additionally, both global and 
local associations among the parameters vary highly over space and 
change across time. This spatial variability of the model estimates 
exhibit the varying behavior of the explanatory factors and COVID-19 
incidences at the county scale. Thus, the application of various models 
can be effective to uncover the global and local spatial associations from 
multiple perspectives. The findings in the present studies are generally 
in agreement with previous investigations, meanwhile not only adding 
values to the existing knowledge of COVID-19 spread in the United 
States but also possessing international relevance for combating the 
crisis worldwide. To inform policy-makers at the nation and state levels, 
understanding the explanatory forces and related confounding factors 
with spatial patterns is of paramount importance. The present study can 
be a reference for future spatial epidemiological research and informing 
decision making in the case of crisis. 
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