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Abstract. The global distribution of cropping intensity (CI) is essential to our understanding of agricultural
land use management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas
in a repeated and cost-efficient manner. Previous studies have mainly focused on investigating the spatiotem-
poral patterns of CI ranging from regions to the entire globe with the use of coarse-resolution data, which are
inadequate for characterizing farming practices within heterogeneous landscapes. To fill this knowledge gap, in
this study, we utilized multiple satellite data to develop a global, spatially continuous CI map dataset at 30 m
resolution (GCI30). Accuracy assessments indicated that GCI30 exhibited high agreement with visually inter-
preted validation samples and in situ observations from the PhenoCam network. We carried out both statistical
and spatial comparisons of GCI30 with six existing global CI estimates. Based on GCI30, we estimated that the
global average annual CI during 2016–2018 was 1.05, which is close to the mean (1.09) and median (1.07) CI
values of the existing six global CI estimates, although the spatial resolution and temporal coverage vary signif-
icantly among products. A spatial comparison with two satellite-based land surface phenology products further
suggested that GCI30 was not only capable of capturing the overall pattern of global CI but also provided many
spatial details. GCI30 indicated that single cropping was the primary agricultural system on Earth, accounting for
81.57 % (12.28× 106 km2) of the world’s cropland extent. Multiple-cropping systems, on the other hand, were
commonly observed in South America and Asia. We found large variations across countries and agroecological
zones, reflecting the joint control of natural and anthropogenic drivers on regulating cropping practices. As the
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first global-coverage, fine-resolution CI product, GCI30 is expected to fill the data gap for promoting sustainable
agriculture by depicting worldwide diversity of agricultural land use intensity. The GCI30 dataset is available on
Harvard Dataverse: https://doi.org/10.7910/DVN/86M4PO (Zhang et al., 2020).

1 Introduction

The interrelated targets of zero hunger, no poverty, and pro-
moting sustainable agriculture have been collectively recog-
nized as the core sustainable development goals (SDGs) by
the United Nations (UN, 2015; Wu et al., 2017; Whitcraft
et al., 2019; Hinz et al., 2020). However, 750 million peo-
ple are currently exposed to severe food insecurity, and the
COVID-19 pandemic may have added approximately 100
million people to the total undernourished population in 2020
(FAO et al., 2020). Projections have further demonstrated
that from 2010 to 2050, the world’s agricultural production
must increase by 70 %–110 % to meet the demands caused
by increasing populations and changing diets (Tilman et
al., 2011). However, intensified agricultural activities have
many ripple effects on terrestrial ecosystems, including for-
est degradation (Morton et al., 2006; Zeng et al., 2018), soil
pollution (Lal, 2002; Jankowski et al., 2018), and changes
in carbon and water flux seasonality (Gray et al., 2014; Hao
et al., 2015), which in turn damage the welfare of human
society. To meet the critical human needs for food security
and environmental sustainability, it is of major scientific sig-
nificance to better understand how existing agricultural land
resources are utilized, both locally and globally.

Cropping intensity (CI), defined as the number of crop
planting and harvesting cycle(s) within a full year (Gray et
al., 2014; C. Liu et al., 2020), offers a measure of cropland
utilization that has profound implications for closing food
production gaps and agricultural intensification (Challinor et
al., 2015; Ding et al., 2016; Wu et al., 2018; Waha et al.,
2020). CI also plays an essential role in crop modelling that
assesses grain yield (Becker and Johnson, 2001), soil qual-
ity (Sherrod et al., 2003), and the impacts of climate change
(Pielke et al., 2007; Challinor et al., 2015). Given its impor-
tance, it is necessary to accurately estimate CI to improve the
management of agricultural activities as well as their interac-
tions with other physical components of the Earth system.
Before the advent of remote sensing, information about CI
could be estimated only based on limited agricultural census
data, but these data are often outdated and variable in accu-
racy (L. Liu et al., 2020). Remote sensing has revolutionized
our ability to estimate CI, especially at continental to global
scales (L. Liu et al., 2020). The presence of crop growth
and senescence phenology constitutes the most characteris-
tic temporal feature of agricultural practices, and numerous
attempts have been made to link high-temporal-frequency
vegetation index time series to CI identification. A grow-
ing season peak detection-based algorithm was developed

and used to monitor the CI spatiotemporal change in China
(Yan et al., 2014, 2019). A similar approach was adopted
by Kotsuki and Tanaka (2015) to derive a global crop cal-
endar dataset containing CI metrics. Despite their prominent
contributions to cropland intensification assessments, most
existing CI products have coarse spatial resolutions, giving
rise to the common presence of mixed pixels that can lead
to a decreased CI mapping accuracy. To alleviate this issue,
in recent years, fine-resolution optical satellite sensors, such
as Landsat and Sentinel-2, have been employed to extract
CI information. For example, Jain et al. (2013) found that
fine-resolution satellite imagery can more accurately depict
the CI pattern in smallholder agriculture regions than coarse-
resolution satellite data. Hao et al. (2019) also reported an
improved performance of CI identification using harmonized
Landsat Sentinel-2 (HLS) data.

It is becoming increasingly clear that a global, fine-
resolution CI product is essential for monitoring the ongoing
cropland intensification process on Earth. However, to the
best of our knowledge, such a dataset has not yet been cre-
ated, reflecting the necessity of a generalizable CI mapping
framework that is representative of diverse climate zones
and cropping systems. To overcome this challenge, we pro-
posed a phenophase-based CI mapping framework in our pi-
lot study (C. Liu et al., 2020) with the use of multiple satel-
lite data and the Google Earth Engine (GEE) platform (Gore-
lick et al., 2017), offering both methodological and practical
bases for operationalizing a global fine-resolution CI prod-
uct. Taking advantage of the proposed framework, the pri-
mary goal of this research is to advance and develop a global,
spatially continuous CI map at a 30 m resolution (GCI30). To
achieve this goal, we regenerated the global cropland extent
layer and modified the CI estimation algorithm on flooded
rice paddies by considering the flooding and transplanting
signals. We integrated the full archive of Landsat, Sentinel-2,
and MODIS data from 2016 to 2018 for constructing seam-
less spectral time series in order to capture the full cropping
cycles, which is the key for CI identification by segment-
ing growing and non-growing periods. The performance of
GCI30 was examined with in situ data as well as with six ex-
isting global products containing CI metrics. With a much
finer spatial resolution and global coverage, GCI30 is ex-
pected to contribute to our fundamental understanding of the
dynamics of the Earth’s terrestrial surface as well as the hu-
man role in land modification through agricultural activities.
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2 Materials and methods

2.1 GCI30 input data

2.1.1 Cropland extent

The cropland definition adopted in this study is based on
the concept presented by the Joint Experiment of Crop As-
sessment and Monitoring (JECAM) network, which uses a
shared definition of the cropland that matches the Food and
Agriculture Organization’s (FAO) Land Cover Meta Lan-
guage. The annual cropland (including area affected by crop
failure) is defined as a piece of arable land that is sowed
or planted at least once within a 12-month period (Waldner
et al., 2016). One exception to the above-mentioned crop-
land definition is the fields used for sugarcane and cassava
cultivation, which are included in the cropland class, al-
though they have a longer vegetation cycle and are not an-
nually planted and harvested. We integrated 10 existing land
cover maps or cropland datasets to delimit the global crop-
land extent while masking out irrelevant non-cropland pix-
els for the period of 2016–2018 (Fig. 1). Readers can refer
to Table S1 in the Supplement for detailed information on
these land cover and cropland layer products as well as their
classes used in the integration. Although variations in clas-
sification systems among different products exist, a subset
of classes of those land cover and cropland layer products
were selected to best fit into the cropland definition. Spa-
tially, FROM-GLC was selected for Europe, Africa, New
Zealand, the majority of Asia, and part of Latin America.
GFSAD30 was selected for tropical Asian islands, includ-
ing Indonesia, Malaysia, and the Philippines. In addition to
these two global-coverage cropland extent products, several
national or regional datasets, including ChinaCover, CDL,
AAFC ACI, NLCD, MapBiomass, CLUM, SERVIR, and
INTA, were used because they have been extensively vali-
dated by local experts and hence exhibited high accuracies
of cropland mapping. Their spatial extents cover China, the
contiguous US, Canada, Alaska, Brazil, Australia, the lower
Mekong River basin (Myanmar, Thailand, Lao, Cambodia,
and Vietnam), and part of Argentina, respectively.

2.1.2 Satellite images and vegetation indices

All available images of top-of-atmosphere (TOA) reflectance
from Landsat 7 ETM+, Landsat 8 OLI, and Sentinel-2 MSI
during 2016–2018 were used for global CI mapping via the
GEE platform. Invalid observations, including clouds, cloud
shadows, snow, and saturated values, were identified and
masked by the function of the mask (Fmask) algorithm (Zhu
and Woodcock, 2012; Qiu et al., 2019). To overcome the
multi-sensor mismatch issue, we adopted an inter-calibration
approach, which converted Sentinel-2 MSI and Landsat 8
OLI TOA reflectance data to the Landsat 7 ETM+ standard
(Chastain et al., 2019). Then the calibrated images were used

to composite the 16 d TOA reflectance time series (labelled
as origin).

Based on the harmonized TOA reflectance composite, the
following vegetation indices including the normalized dif-
ference vegetation index (NDVI), enhanced vegetation index
(EVI), and land surface water index (LSWI) were calculated:

NDVI=
ρNIR− ρRED

ρNIR+ ρRED
(1)

EVI= 2.5×
ρNIR− ρRED

ρNIR+ 6× ρRED− 7.5× ρBLUE+ 1
(2)

LSWI=
ρNIR− ρSWIR

ρNIR+ ρSWIR
, (3)

where ρBLUE, ρRED, ρNIR, and ρSWIR are the TOA
reflectance values of the blue, red, near-infrared, and
shortwave-infrared bands, respectively. We also used the
MODIS Vegetation Index (MOD13Q1) Version 6 products
(NDVI and EVI) and LSWI derived from MODIS Surface
Reflectance (MOD09A1) Version 6 products to fill data gaps
caused by the vacancy of Landsat and Sentinel-2 observa-
tions that were masked out by the Fmask algorithm. In partic-
ular, the coarse MODIS datasets were resized to 30 m using
the bicubic interpolation method. Then an empirical linear
function was built for each pixel to bridge the data records of
MODIS and Landsat and Sentinel-2, and missing data gaps
were filled with the resampled, transformed MODIS data (la-
belled as MODIS modelled). If there is no valid data from ei-
ther Landsat and Sentinel-2 or MODIS, temporally adjacent
(within 48 d) cloud-free Landsat and Sentinel-2 observations
were used to determine the filling value (labelled as inter-
polated). After gap-filling, a weighted Whittaker smoother
(Eilers, 2003; Kong et al., 2019; Zhang et al., 2019) was fur-
ther adopted to smooth the gap-filled time series data. We as-
signed different weights (1, 0.5, 0.2) to Landsat and Sentinel-
2 original observations, MODIS-modelled values, and inter-
polation values, respectively. Finally, a dataset of smoothed,
seamless time series of vegetation indices was generated at a
spatial resolution of 30 m with a temporal interval of 16 d.

2.2 Reference samples

The validation of the global CI product requires carefully
constructed reference samples (Kontgis et al., 2015; Li et
al., 2014; C. Liu et al., 2020). In this study, we constructed
two independent reference datasets (termed RDsat and RD-
site hereafter) (Fig. S1) to evaluate the GCI30 performance
because currently no other product is capable of offering
comprehensive CI mapping assessment at the global scale.
The first dataset, RDsat, was generated based on a visual
interpretation of satellite time series via the Geo-Wiki plat-
form (Fritz et al., 2012). Based on the global segmentation of
agroecological zones (termed AEZs here after) (Gommes et
al., 2016, 2017) (Table S2), we applied a stratified sampling
approach to ensure that RDsat was geographically represen-
tative across the globe. We divided all 65 AEZs into four
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Figure 1. Spatial distribution of the land cover and cropland layer products used for the global 30 m cropland extent generation.

categories based on their cropland proportions: VL (cropland
proportion< 4 %), L (4 %≤ cropland proportion< 15 %), M
(15 %≤ cropland proportion< 40 %), and H (cropland pro-
portion≥ 40 %). For each category, 1000 plots (each equiv-
alent to a 30 m Landsat pixel size) were randomly collected
only within the cropland extent, and their phenological cy-
cles during the period of 2016–2018 were visually counted.
We have seven remote sensing experts (listed as co-authors)
who checked all collected plots, and only well-interpreted
plots with a high level of confidence were kept, leading to
3744 sample records. The second dataset, RDsite, was de-
rived from the PhenoCam dataset (Richardson et al., 2018a,
b; Seyednasrollah et al., 2019), which has been widely used
as a robust in situ reference for remotely sensed phenology
metric validation. Globally, there are 115 PhenoCam sites on
cropland, and a total of 40 sites were collected after remov-
ing those with data records of less than 1 year (Table S3).
For each selected site, we used the green chromatic coordi-
nate (GCC) index (Richardson et al., 2018b) and in situ phe-
nology camera image time series for cropping cycle num-
ber identification. It should be noted that not all the selected
PhenoCam sites precisely covered a period matching 2016–
2018. For instance, the site with the ID “usof6” in Table S3
provided measurements from May 2018 to September 2020,
which was out of the study period used for our GCI30 prod-
uct. However, to make full use of these measurements, we
implemented our approach of CI identification by aligning
the study period with the period containing the measurements
at each of these sites. Thus, some CI identification covered
longer periods than the 3-year length (2016–2018).

2.3 Global cropping intensity mapping method

2.3.1 CI mapping on non-flooded croplands

We applied the framework designed by C. Liu et al. (2020)
for mapping global CI at the 30 m spatial resolution, using
the phenophase-based approach for the non-flooded crop-
land and improving the algorithm to consider flooded rice
paddy (Sect. 2.3.2). Targeting non-flooded cropland pixels,
the methodology can be divided into two main steps, includ-
ing (i) the identification of sub-period for a complete phe-
nological phase of cropland within each cropland pixel and
(ii) the derivation of cropping cycles for CI mapping.

With the smoothed, seamless NDVI time series, we iden-
tified a complete phenological cycle of crop via detecting the
transitioning points that characterize the phenophase. Within
the entire study period, 2016–2018, the transitioning points
were located as 50 % of the NDVI amplitude (i.e. differ-
ence between the minimum and maximum values of obser-
vations) and labelled either greening-up points or greening-
down points (Bolton et al., 2020). A point at the position
where the slope of the time series function is positive is a
greening-up point, while a point at the negatively chang-
ing time series is a greening-down point. A pair of points
of these two types can separate NDVI time series into one
staggered segment consisting of a growing sub-period and a
non-growing sub-period.

Based on the segmented time series, we determined the
potential number of complete phenophase cycles (Npc) by
taking the minimum value of the total numbers of transition-
ing points between the two types (greening-up and greening-
down, labelledNup andNdown, respectively) within the study
period, formulated as
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Npc =min
{
Nup,Ndown

}
. (4)

False cycles may exist due to the outliers of NDVI observa-
tions, with falsely detected cycles characterized by unrealis-
tically short sub-periods pertaining to crop phenology (Yan
et al., 2019). In other words, it is practically impossible for
crop to be grown and harvested within a rather short time. In
this case, we set a lower limit of the growing–harvesting cy-
cle length to 48 d for removing the false cycles, noted as Nfc.
By adjusting these falsely detected cycles and considering
the 3-year study period (2016–2018), we calculated the an-
nual cropping intensity (CI) for a non-flooded cropland pixel
as

CI=
Npc−Nfc

3
. (5)

It should be noted that using the binary phenophase profile
itself is not effective enough for identifying the continuous-
cropping type, which is defined as cropping systems having
short growing period (CI> 3 for this study) or exhibiting
a lower degree of seasonality (e.g. tea plantation). There-
fore, for each cropland pixel, we calculated the coefficient
of variation (the ratio of the standard deviation to the mean,
termed CV hereafter) of the NDVI time series and adopted a
threshold method to determine whether the pixel belonged to
the continuous-cropping type (low CV value). Specifically,
within each AEZ, half of the RDsat samples labelled con-
tinuous cropping (if they existed) were adopted to obtain
the CV threshold. This method generated an independent
continuous-cropping type layer, which was integrated with
the initially derived CI result.

2.3.2 CI mapping on flooded rice paddies

Flooded rice paddy, which accounts for more than 12 % of
the global cropland area and feeds approximately half of the
population (FAOSTAT, 2019; Ding et al., 2020), bears spe-
cial mention in our study because it supports the only staple
grains that need to be transplanted (Dong and Xiao, 2016),
resulting in a relatively short non-growing period that may
be mistakenly missed when using the above-mentioned ap-
proach. This issue becomes more prominent in areas with
high cloud cover (e.g. Monsoon Asia). Therefore, we mod-
ified our approach in flooded rice paddy areas by consider-
ing the influence of the “flooding and transplanting signal”
on the created phenophase profile (Fig. 2). Similar to the
approach for non-flooded croplands, the NDVI time series
trajectory was used to generate an initial phenophase profile
(Fig. 2a). Then, within each identified growing season, the
flooding and transplanting signals were detected and recog-
nized based on the criteria LSWI>EVI or LSWI>NDVI
(Fig. 2b), indicating that the water signal dominates the pixel
spectral performance (Xiao et al., 2005; Dong et al., 2015,
2016). We regard the “flooding and transplanting” period as

a non-growing phenophase. Thus, the initial phenophase pro-
file can be divided into two segments accordingly (Fig. 2c),
reflecting the reality of double-season rice planting cycles.
Finally, the CI information was determined by enumerating
the transition points between different cropping cycles. Due
to data limitations, this specific CI identification approach
was applied only in southern China (AEZs C33, C37, C40,
C41, and C42) and the lower Mekong River basin, where the
paddy rice type was included in the land cover type scheme
(derived from ChinaCover and SERVIR, respectively).

2.4 Accuracy assessment

Based on the RDsat and RDsite datasets, the accuracy assess-
ment of GCI30 was conducted in two ways. In the first vali-
dation method, we directly evaluated the difference between
the reference and estimated results. Here, the total number of
cropping cycles (termed TNCC hereafter) rather than the ac-
tual CI value was used to avoid decimals. Four complemen-
tary indicators – systematic error (SE), mean absolute error
(MAE), root mean square error (RMSE), and coefficient of
determination (R2) – were calculated as follows:

SE=
1
N

N∑
i=1

(
f̂i − fi

)
(6)

MAE=
1
N

N∑
i=1

∣∣∣f̂i − fi∣∣∣ (7)

RMSE=

√√√√ 1
N

N∑
i=1

(
f̂i − fi

)2
(8)

R2
= 1−

N∑
i=1

(
f̂i − fi

)2

N∑
i=1

(
f̂i − f

)2
, (9)

where f̂i and fi are the estimated and reference cropping cy-
cle number(s) for sample pixel i, respectively. N represents
the number of samples, and f is the mean cropping cycle
number value of all samples. In addition to directly quanti-
fying the mapping errors, we further reclassified the GCI30
result into four categories: single cropping (0<CI≤ 1), dou-
ble cropping (1<CI≤ 2), triple cropping (2<CI≤ 3), and
continuous cropping. We obtained the confusion matrix and
calculated quantitative metrics, including overall accuracy
(OA), kappa coefficient, producer accuracy (PA), and user
accuracy (UA). Due to the limited sample sizes of RDsite,
the classification-based accuracy assessment was conducted
only for RDsat.

A systematic uncertainty analysis was further applied by
interpolating the estimation biases from RDsat samples to a
spatial distribution map (H. Liu et al., 2020). First, the lin-
ear normalization was conducted to transform the estimation
bias range of RDsat samples to [0,1]. Then the uncertainty

https://doi.org/10.5194/essd-13-4799-2021 Earth Syst. Sci. Data, 13, 4799–4817, 2021



4804 M. Zhang et al.: GCI30

Figure 2. Illustration of the specific CI identification for a flooded rice paddy pixel.

map of GCI30 was created based on the Kriging interpolation
method (Oliver and Webster, 1990). We used the ArcMap
software of version 10.1 to implement the Kriging interpola-
tion in this study, with the spatial search radius parameter set
as the 12 nearest sample units. As a result, the values of gen-
erated uncertainty map range from 0 to 1. A smaller value
indicates higher estimation reliability, while a higher value
suggests a greater level of overestimation or underestimation
of cropping cycle(s).

2.5 Comparison with other global products

Comparison of GCI30 with other global products or stud-
ies was conducted statistically and spatially (if available) at
multiple levels. At the global level, we compared and eval-
uated the statistical differences between GCI30 and six ex-
isting statistics-based or satellite-based products (Table 1),
including NASA’s Vegetation Index and Phenology V004
(VIP4) dataset (Didan and Barreto, 2016), MODIS Land
Cover Dynamics (MCD12Q2) Version 6 (Gray et al., 2019),
SAtellite-derived CRop calendar for Agricultural simulations
(SACRA) (Kotsuki and Tanaka, 2015), harvest frequency
by Ray and Foley (2013) (R&F), actual cropping intensity
(ACI) (Wu et al., 2018), and cropland use intensity (CUI)
(Siebert et al., 2010). Among these products, four of them
(MCD12Q2, VIP4, SACRA, and R&F) were further em-
ployed for national-level comparison. It should be noted
that comparisons were only conducted for countries where
both GCI30 and reference products are available. Finally,
MCD12Q2 and VIP4 were used for pixel-by-pixel compar-
ison against GCI30 due to their relatively fine spatial res-
olutions. To minimize uncertainty caused by temporal dis-
agreement, we selected only the 2014 VIP4 and the 2016–
2018 averaged MCD12Q2 data, within which the “Num-
ber of Seasons” layer of VIP4 and the “NumCycles” layer

of MCD12Q2 were extracted for intercomparison. We up-
scaled GCI30 to 0.05◦ and 500 m using the majority algo-
rithm to match the spatial resolution of VIP4 and MCD12Q2,
respectively. The same reclassification procedure described
in Sect. 2.4 transformed the actual CI value of GCI30 and
MCD12Q2 to match the VIP4 dataset’s integer value range
(0, 1, 2, 3), except for the continuous cropping and non-
cropland pixels that were excluded from our comparison.
We generated the difference maps among GCI30, VIP4, and
MCD12Q2 to understand the overall overestimation or un-
derestimation of our mapped CI results across continents.

3 Results and discussion

3.1 Reliability of GCI30

We examined GCI30 performance by generating a scatter
plot of estimated and reference TNCC derived from RD-
sat and RDsite, respectively (Fig. 3). In general, GCI30
could provide reliable estimation results across different
agro-environmental and management conditions, with rela-
tively small MAE and RMSE values (equal to or less than
0.4 and 0.92, respectively) using the two reference datasets.
Referring to R2, GCI30 captured over 91 % of the varia-
tion in RDsite-derived TNCC and over 56 % of the variation
in RDsat-derived TNCC. The discrepancies between RDsat-
derived metrics and RDsite-derived metrics were mainly at-
tributed to the differences in sample size and crop planting
diversity. Specifically, the network of PhenoCam spots is spa-
tially sparse, and most cropland sites are distributed in the
United States featuring single-cropping systems (Fig. S1).
There were slight systematic underestimations (negative SE)
for GCI30, with the larger bias level occurring for RDsite.
This result is consistent with C. Liu et al. (2020), indicating
an overall conservative CI estimation by GCI30. In addition,
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Table 1. Existing cropping intensity products or studies used for intercomparison.

Existing products Algorithm Input data Temporal range Spatial Way of
and studies used resolution comparison

MCD12Q2 Phenometrics-based
method

Time series MODIS
EVI2

2016–2018 500 m (1) Global level,
(2) national level,
(3) pixel level

VIP4 Half-maximum VI
approach

Time series NDVI and
EVI2 derived from both
AVHRR and MODIS

2014 0.05◦ (1) Global level,
(2) national level,
(3) pixel level

SACRA Peak-counting consi-
dering crop calendar

Time series of SPOT-
VEGETATION NDVI

2004–2006 5′ (1) Global level,
(2) national level

R&F The ratio of harvested
cropland to total crop-
land

FAO statistics 2000–2011 National
level

(1) Global level,
(2) national level

ACI Peak-counting Time series GIMMS
NDVI3g

2009–2011 8 km (1) Global level

CUI The ratio of harvested
crop areas to total
cropland area by ex-
cluding fallow land

MIRCA crop areas 2000 5′ (1) Global level

we found that larger estimation errors were commonly ob-
served in samples with more cropping cycles. This tendency
was not surprising because of the accumulated errors from
every aspect of information extracted from remote sensing
(Defourny et al., 2019), including data acquisition, time se-
ries modelling of vegetation indices, and phenological cycle
identification. Therefore, we may expect that GCI30 faces
larger challenges in terms of analysing multiple cropping
systems.

Figure 4 further displays the spatial pattern of RDsat-based
TNCC estimation bias across the globe. From 2016 to 2018,
79.8 % of the points exhibited unbiased predictions. Among
the pixels with disagreement (i.e. non-zero bias), the majority
were associated with one or two cropping cycle difference(s).
Overall, there were more underestimation points (12.2 %)
than overestimation points (8.0 %). Spatially, negative biases
were mainly distributed in high-CI regions, including the
Pampas (AEZ C26), central-eastern Brazil (AEZ C23), the
Gulf of Guinea (AEZ C03), East African Highlands (AEZ
C02), south of Himalaya (AEZ C44), and the Huanghuai-
hai Plain (AEZ C34), altogether forming a northward “un-
derestimation belt” along the longitudinal gradient. The neg-
ative errors could possibly be due to the complexity of some
special cropping systems that cannot be fully accounted for
by our CI mapping method. For example, inter-cropping or
mixed cropping may lead to shallow troughs in NDVI time
series, which makes the 50 % NDVI amplitude rule less reli-
able (C. Liu et al., 2020). Given the conservative CI estima-
tion algorithm, it was somewhat unexpected to observe over-
estimation errors primarily concentrated in western Europe

(AEZ C60) and Ukraine to the Ural Mountains (AEZ C55),
where the single-cropping practice dominates due to limited
hydrothermal conditions (Wu et al., 2018). These positive
biases could be attributed to the fallow strategy adopted in
some Europe countries (Estel et al., 2016). During a fallow
cycle, there may exist weeds which are falsely identified as
one solid cropping cycle. In summary, the global bias distri-
bution highlights the complex suite of biotic and abiotic pro-
cesses that can obscure the effectiveness of the phenophase-
based CI mapping framework.

Following the reclassification procedure illustrated in
Sect. 2.4, we derived the corresponding confusion matrix of
GCI30 using RDsat samples, with the quantitative accuracy
metrics shown in Table 2. We found that GCI30 had reason-
able classification performances, with OA and kappa coef-
ficients greater than 92 % and 0.72, respectively. Regarding
the classes of CI, single-cropping systems were associated
with more robust classification results than were multiple-
cropping systems. Comparatively, the single-cropping class
was more subject to commission errors than omission er-
rors (PA>UA), while the opposite tendency (PA<UA)
was observed for the double- and triple-cropping classes.
Continuous cropping is a fundamentally different agricul-
tural land use management type from others. Here, we
found that the continuous-cropping class of GCI30 had a
higher PA (93.1 %) than UA (77.0 %). A possible expla-
nation for this result is likely attributed to the threshold-
based method for continuous-cropping identification. Some
noncontinuous-cropping systems may also exhibit low CV
values, leading to a relatively high commission error level.

https://doi.org/10.5194/essd-13-4799-2021 Earth Syst. Sci. Data, 13, 4799–4817, 2021



4806 M. Zhang et al.: GCI30

Figure 3. GCI30 accuracy assessment based on RDsat (a) and RDsite (b). The red line represents the linear fitting line with the intercept
forced to 0. The frequency of a specific reference–prediction value pair is proportional to its point size. Samples identified as continuous-
cropping types were excluded.

Figure 4. Spatial distribution of RDsat-based TNCC bias. The actual TNCC is proportional to its point size, and the prediction biases are
identified by different point colours. Sample points identified as the continuous-cropping type were excluded. The blue rectangle indicates
overestimations, and the red ellipsis region represents the northward “underestimation belt” along the longitudinal gradient.

Notably, although a stratified sampling strategy was con-
ducted for creating RDsat, its sample size was still unbal-
anced among the different CI classes. The single-cropping
class alone occupied 88.9 % of the total number of samples.
Therefore, future efforts of GCI30 validation need to empha-
size the inclusion of more samples with multiple-cropping
systems.

A spatial distribution map of the GCI30 uncertainty was
generated based on the RDsat. As shown in Fig. 5, most
cropland areas display blue tones, indicating their low un-
certainties and high estimation reliabilities of the GCI30.
Spatially, relatively lower uncertainty levels were observed
in Canada, the northern Great Plains in the United States,
Russia, northern China, and southern Africa, where single
cropping dominates. Meanwhile, there are still some areas of
cropland with higher uncertainty as illustrated in orange and

Figure 5. Global uncertainty map of GCI30 during 2016–2018,
where regions in red represent higher uncertainty, and those in blue
represent lower uncertainty.

red tones, mostly distributed in the Pampas, southern Nige-
ria, and central and northern India.
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Table 2. Confusion matrices of GCI30.

CI class type Single Double Triple Continuous UA (%)

Reference Single 3059 186 94.3
Double 52 346 2 3 85.9
Triple 1 6 2 66.7
Continuous 9 9 2 67 77.0
PA (%) 98.0 64.0 60.0 93.1
OA (%) 92.9

Kappa 0.728

3.2 Spatial pattern of GCI30

GCI30 provides the first spatially continuous map of global
CI at a 30 m resolution (Fig. 6). Based on this map, a het-
erogeneous pattern in CI compositions across continents was
found, which are subject to varying anthropogenic and cli-
mate conditions. Overall, as expected, single cropping was
the primary agricultural system on Earth, accounting for
81.57 % (12.28× 106 km2) of the world’s cropland extent.
Double cropping, on the other hand, was typically imple-
mented in Asia, South America, and the Nile River basin
of Africa, together occupying 17.42 % (2.62× 106 km2) of
global croplands. Comparatively, the proportions of triple
and continuous cropping were quite small, with their distri-
butions mainly limited to Southeast Asia. According to the
area statistics at 5◦ intervals, we found that the area of single
cropping reached 54 % or higher in all latitude and longi-
tude zones. The double-cropping distribution along latitude
peaked in intervals ranging from 20 to 40◦ N, which encom-
passed China and India, the two most populous countries
in the world. Along longitude, double cropping was mainly
concentrated in three zones: 55 to 60◦W, 75 to 90◦ E, and
100 to 125◦ E. These regions are commonly characterized by
warm and humid climates, except for the Nile River basin, in
which irrigation has been commonly used to support inten-
sive farming practices (Zohaib and Choi, 2020). Over 75 %
of triple- and continuous-cropping areas are located within
tropical zones (5◦ S to 5◦ N). The tropical rainforest climate
of these regions ensures sufficient water and heat supplies for
crop growth throughout the year (Köppen et al., 2011).

Figure 7 displays the GCI30-based TNCC statistics at the
continent level. We combined Australia and Oceania (New
Zealand, Melanesia, Micronesia, and Polynesia) due to the
rarity of cropland on these two continents. Globally, South
America exhibited the most intensified cropping level, fol-
lowed by Asia and Europe. Specifically, the average TNCC
values were 3.67, 3.38, and 3.07 for South America, Asia,
and Europe, respectively. South America and Asia also pos-
sessed the largest standard deviations of TNCC, indicating
the inherent diversity of agricultural activities within these
two continents as weather conditions directly affect crop-
ping practices (Iizumi and Ramankutty, 2015). For exam-

ple, in Asia, triple- and continuous-cropping systems were
distributed in Southeast Asia, including Indonesia, Malaysia,
southern Thailand, and the Mekong River Delta in Vietnam.
Double cropping was concentrated in the North China Plain,
Ganga River basin and southern China, while the rest of Asia
was dominated by a single-cropping pattern, covering cen-
tral Asia, northeastern Asia, and southern India. Following
these continents, moderate TNCC was found in North Amer-
ica (2.93± 0.54) and Africa (2.78± 0.71). Among all con-
tinents, the lowest TNCC occurred in Australia and Ocea-
nia (2.31± 0.77), where arid and semiarid climate types are
dominant (Köppen et al., 2011; Beck et al., 2018).

At the global scale, the average CI pattern was heteroge-
neous across countries and AEZs (Fig. 8, left panel). Coun-
tries with the highest average CI levels were commonly de-
tected in Asia (Bangladesh, Vietnam, Philippines, Sri Lanka)
and Latin America (Guyana, Paraguay, Suriname, Haiti, and
Dominican Republic). Together with Egypt, these top 10
countries exhibited TNCC values greater than 4.1 during
2016–2018. In contrast, low to moderate CI levels were typ-
ically found in high-latitude countries, such as Canada, Rus-
sia, and Mongolia. In addition to the latitude gradient, we
found that the diversity of cropland management played a
critical role in shaping the CI pattern. For example, some
high-latitude European countries (Germany, Poland, Belarus,
etc.) showed relatively high CI levels due primarily to their
advanced cropland management practices (Guo, 2021). Rain-
fed agricultural practices lead to fewer cropping cycles in the
Middle East and North African countries, except for Egypt,
where most croplands are irrigated (Wu et al., 2018). Taking
climate conditions into account, the heterogeneity of global
CI becomes even more prominent among different AEZs.
Arid regions, which cover vast areas in Africa, Australia, and
Central Asia, are associated with fewer cropping cycles due
to a lack of water for irrigation (Chiew et al., 2011; Guo
et al., 2018) and less developed agricultural infrastructures
(Mason-D’Croz et al., 2019). In contrast, intensive farming
is widely distributed in humid and low-latitude areas such as
South China and the Mekong Delta. Among all 65 AEZs, the
Huanghuaihai Plain in China had the highest CI, followed by
the Amazon rainforest region of South America and Taiwan
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Figure 6. Geographical distribution of global CI types during 2016 to 2018 identified by GCI30. The area statistics along latitude and
longitude are derived with an interval of 5◦. The area unit is 1× 106 km2.

Figure 7. Statistics of GCI30-based TNCC during 2016 to 2018 at the continent level. The red line indicates the standard deviation (SD).

Province. The lowest CI occurred in the Australian Desert,
with an average TNCC less than 2.

Overall, countries and AEZs with intensive farming are
more subject to internal variability, as reflected by higher
standard deviations (Fig. 8, right panel). Globally, there
are 14 countries and 7 AEZs exhibiting standard deviations
greater than 1.2, and most of them are located in South Amer-
ica and Asia. Regions with low CI averages but high CI

standard deviations were observed only on the western coast
of South America and Queensland to Victoria in Australia,
where partial irrigation in the former (Xie et al., 2019) and
unstable rainfall in the latter resulted in diversified cropping
intensities among years (King et al., 2020). The high standard
deviations in Australia and Oceania mainly resulted from the
high within-country and zonal heterogeneity, which may en-
compass aspects including the exceptionally variable climate
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Figure 8. Average and standard deviation (SD) of TNCC during 2016 to 2018 at the national and AEZ levels.

with the prevalence of floods and droughts (King et al., 2020)
and the annual shifting of crop types as well as cultivated
and fallow lands (Song et al., 2017). In addition to these reg-
ular drivers, the political situation may cause CI spatiotem-
poral diversity. Notably, for instance, we found an unusually
high standard deviation in Afghanistan, which was caused by
both crop failure during the emergence to early development
stages due to adverse weather conditions (Rousta et al., 2020)
and abandoned cropland resulting from armed conflicts and
refugee migrations (Iqbal et al., 2018; Galdo et al., 2020).

3.3 Cross-comparison with other studies

Due to the differences in methods, input data, and spa-
tial resolution of the existing products containing CI met-
rics as listed in Table 2 and GCI30, the statistical average
CI at global scales varied among the products. Based on
GCI30, the global average CI during 2016–2018 was 1.05
(the continuous-cropping pixel excluded). Statistically, our
CI is in a remarkably high agreement level with estimates
based on the existing six estimates (mean CI: 1.09; median
CI: 1.07), despite their significantly varying spatial resolu-
tion and temporal coverage. The minimum CI among the
seven studies was estimated to be 0.84 per year based on
the total cropland extent and the total harvested crop area
reported by the agricultural statistics database of the United
Nations Food and Agriculture Organization (FAO) FAO-
STAT (FAOSTAT, 2019; Siebert et al., 2010). CI estimated
by GCI30 is slightly higher than that derived from the FAO
statistical database. The CI of other existing products listed
in Table 2 ranges from 1.05, as estimated from the “NumCy-
cles” layer of MCD12Q2 data (Gray et al., 2019), to 1.26, as
evaluated by Wu et al. (2018). The statistics-based CI values
estimated by Ray and Foley (2013) are lower than those esti-
mated based on remote sensing data including the GCI30 and

those estimated by VIP4 and Wu et al. (2018) using AVHRR
satellite observation data. The main reason is that statistics-
based CI could not exclude the fallow land area as the agri-
culture statistics usually lack statistical information on fallow
land, while fallow land could be identified using remote sens-
ing (Zhang et al., 2014a, b) and excluded when generating
satellite-based CI products. Our CI is also less than those CI
products derived from AVHRR (VIP4 and Wu et al., 2018).
On the one hand, the actual harvest frequency estimated by
Wu et al. (2018) might overestimate the annual harvest areas
and accordingly overestimate the cropping intensity because
they may ignore the presence of fallowed cropland. Each
pixel of cropland was assigned to either a single-cropping or
double-cropping category, and fallow pixels were not consid-
ered, which will result in a higher CI (Wu et al., 2018). On the
other hand, GCI30 systematically underestimates the crop-
ping intensity when the harvest window is narrow between
two growing seasons as a valid phenology season should in-
clude both green-up and green-down segments based on the
GCI30 algorithm (C. Liu et al., 2020). Interestingly, our CI is
exactly the same as the global average from MCD12Q2 for
the years 2016 to 2018.

Figure 9 illustrated the differences in statistical annual
CI at the country scale between GCI30 and four reference
datasets. Statistical values of CI at the national scale are
available in Table S4. National statistical CI values derived
from GCI30 are in general close to that of MCD12Q2 and
VIP4. The discrepancies of statistical CI values between
GCI30 and those two products over a large proportion of
countries range from −0.3 to 0.3. GCI30 and SACRA also
present similar patterns of CI at the national scale, especially
in Asia. GCI30 presents higher CI values in central Europe
and Southeast Asia islands as well as Canada, Brazil, and
Mexico. In contrast, positive difference values of cropping
intensity were commonly observed all over the world as pre-
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Figure 9. Statistics of annual CI differences at national level between GCI30 and four existing products. GCI30−MCD12Q2 represents
the differences between GCI30 and the “NumCycles” layer of MCD12Q2; GCI30−VIP4 represents the differences between GCI30 and the
“Number of Seasons” layer of VIP4; GCI30−R&F represents the differences between GCI30 and harvest frequency by Ray and Foley (2013);
GCI30−SACRA represents the differences between GCI30 and CI by Kotsuki and Tanaka (2015).

sented by the GCI30 – R&F map. Lower CI values are only
observed in a few countries in Africa, Asia, and South Amer-
ica.

This study further compared the spatial pattern of the
global CI difference between GCI30 and the two global land
surface phenology products (MCD12Q2 and VIP4) at pixel
level, as displayed in Fig. 10. Overall, all three products re-
vealed consistent CI estimations across continents, with zero-
difference pixels reaching 79 % or higher and the majority of
CI differences ranging from −1 to 1. Spatially, positive CI
difference values were commonly found in Southeast Asia,
the Indian subcontinent, and some parts of Europe. Negative
CI difference values, on the other hand, were mainly detected
in North and South America. There were also discrepancies
when these two phenology products were used as the base-
lines. Referring to MCD12Q2, there were many pixels show-
ing positive values, especially in Africa and mainland China.
However, the opposite tendency was observed using VIP4,
which exhibited vast negative pixel distributions in Europe
and the North China Plain.

To further explore how the CI difference varied over
space, we selected four 15◦× 12◦ subregions (North Amer-
ica, South America, South Asia, and East Asia, which are
labelled A, B, C, and D, respectively, in Fig. 10) that were
representative of the global diversity of crop species, cli-
mate types, and management conditions. In general, sub-
stantial variations were detected through these spatially ex-
plicit maps. The strongest agreement between GCI30 and
MCD12Q2 was found in East Asia (83 % of zero values),
followed by North America and South Asia, with over 75 %
agreement. The lowest agreement level occurred in South
America, where 32 % of the GCI30 estimations showed pos-

itive or negative CI differences compared to the MCD12
output. Comparatively, the significant differences and corre-
sponding spatial distributions between the GCI30 and VIP4
outputs had a low level of agreement, although the percent-
ages of pixels with zero difference reached 50 % or higher
for all subregions. Specifically, three out of the four subre-
gions had at least one-fifth of the pixels featuring negative
CI differences. The largest negative disagreement was de-
tected in East Asia, where 41 % of the total cropland area
had negative values, while North America and South Amer-
ica also had considerable negative proportions. Finally, in
South Asia, the positive and negative pixel percentages were
almost equal, i.e. half and half. Neither MCD12Q2 nor VIP4
should be considered to be ground truth. In fact, the reliabil-
ity of these two land surface phenology products, especially
VIP4, is affected by several factors, including a coarse spatial
resolution, temporal mismatch, and algorithm structure dif-
ferences when compared to GCI30. Taking East Asia as an
example, the “cross-year season cycle” phenomenon (C. Liu
et al., 2020) caused by winter wheat planting could lead to
one more “partial growing season” being detected by VIP4
(Didan and Barreto, 2016), which largely explains why the
CI difference between GCI30 and VIP4 shows an outstand-
ing underestimation pattern.

3.4 Advantages and limitations of GCI30

As a global 30 m product, GCI30 depicts the worldwide di-
versity of agricultural land use intensity in a spatially explicit
manner that has not been fully revealed by existing stud-
ies or datasets. Given the CI distribution with a fine spatial
resolution, GCI30 is associated with reduced uncertainties
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Figure 10. Spatial patterns and statistics of the CI differences among GCI30, MCD12Q2, and VIP4.

caused by the mixed-pixel effect. In addition to the improve-
ment of mapping accuracy, GCI30 has the potential to mon-
itor landscape-scale cropping practices on fragmented land
parcels by smallholders, which comprise over half of the ru-
ral populations in developing nations that are most vulnera-
ble to food security and environmental challenges (Morton
et al., 2006; Jain et al., 2013; Lowder et al., 2016; C. Liu et
al., 2020). Compared with the generalizable crop phenophase
pattern, the GCI30 algorithm is not only efficient in mapping
the CI distribution across various AEZs but is also flexible
enough to be improved with updated data inputs. For ex-
ample, the Harmonized Landsat and Sentinel-2 surface re-
flectance dataset (Claverie et al., 2018), with a 5 d revisit
interval and a 30 m pixel size, is expected to enhance the
global CI mapping performance once its worldwide cover-
age is ready. The successful production of GCI30 on the GEE
platform illustrates a paradigm of mapping farming practices
that is globally consistent and locally relevant using state-of-
the-art cloud computing resources (Lewis et al., 2017; Amani
et al., 2020; Tamiminia et al., 2020). It inspires future global
fine-scale agricultural research that was previously not appli-
cable.

A large number of natural factors and anthropogenic
drivers are related to CI at the planetary scale. Accuracy as-
sessments show that GCI30 explained over 91 % and 56 %
of the sample variations examined by RDsat and RDsite, re-
spectively (Fig. 3). The errors in GCI30 could be related to

the uncertainties in input data and limitations of the algo-
rithm. The reliability of the cropland extent is a major factor
constraining CI mapping performance. To minimize this ef-
fect, we integrated an ensemble of 10 land cover or specific
cropland layer products for acquiring global cropland extent
at a 30 m resolution for 2016–2018. Despite the high over-
all accuracy of the generated cropland extent, classification
errors still exist, especially in some regions of Africa and
Asia where small cropland patches are mixed with other land
covers (Gong et al., 2013; Xiong et al., 2017). Although we
follow the definition of cropland to select a subset of classes
of a layer that best fit in the definition for each of the land-
cover and cropland products, the inconsistency among the
10 land cover or specific cropland layer products still exists.
The first issue is greenhouse farming, which is included in
the cropland class in the FROM-GLC. However, the GCI30
product excluded the greenhouse pixels as CI of greenhouse
crops is detected as zero cropping monitored by remote sens-
ing. The second concern is the perennial woody crops such
as orchards and vineyards from NLCD. As the NLCD data
were only used for the Alaska region, they will have very
limited impact on the integrated global cropland layer and
accordingly a minor effect on GCI30. On the other hand, as
no single product has yet been shown to be consistently ac-
curate in representing cropland distribution, our approach by
integrating a different dataset is still better than relying on
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a single source of land cover or cropland layer (Fritz et al.,
2015).

The GCI30 algorithm depends heavily on crop phenologi-
cal information derived from the time series of vegetation in-
dices. We found that the spatial pattern of the invalid obser-
vation count of the 16 d harmonized TOA reflectance com-
posite (Fig. S2) matched well with those of the RDsat sam-
ple bias in some cloudy regions, such as the Gulf of Guinea
and East African Highlands (Fig. 4), indicating that the per-
formance of GCI30 may be limited in areas suffering from
unfavourable weather conditions or extreme seasonal imbal-
ances of clear observations. In particular, the presence of
clouds in the early and mid agricultural growing season is
preventing optical remote sensing satellites from accurate
agricultural applications including cropping cycle detection
(Whitcraft et al., 2015; Nabil et al., 2020). Thus, it is reason-
able to use the proportion of the invalid number of 16 d com-
posites during 2016–2018 as a quality indicator of the GCI30
product. Lower data qualities were observed in the Amazon,
western Africa, South and Southeast Asia, and South and
Southwest China than other regions due to the high cloudy
frequency (Fig. S2). Although the cloud frequency is rela-
tively low in western Russia and central Europe compared
with the above cloud-prone regions (Whitcraft et al., 2015),
the data quality is also low mainly due to the snow cover in
winter and spring. We further evaluated the uncertainty in the
GCI30 at the global scale. In general, the places with high
uncertainty coincided with the cloud-prone regions, which
might be a resultant of high invalid satellite observations
(Fig. S2, S3). The fragmented agricultural fields and complex
farming practices in the regions including western Africa,
South and Southeast Asia, and the East African Highlands
(Fritz et al., 2015) further broaden the uncertainty. In Ar-
gentina, the cropland field size is large, and the cloud pres-
ence is less frequent. However, large bias of cropping cycles
and high uncertainties were commonly observed (Figs. 4, 5),
which might be attributed to the omission of the poor crops
stressed by the severe drought in the 2017–2018 agricultural
year (Rivera et al., 2021). Rice paddies are fundamentally
different from non-flooded croplands, which affects CI map-
ping performance. We designed a specific rice paddy CI iden-
tification approach by considering the influence of the “flood-
ing and transplanting phase”. While promising, its applica-
tion was limited due to the lack of a specific rice paddy layer.
Therefore, more improvements can be included, such as in-
tegrating synthetic-aperture radar (SAR) data time series for
more accurate flood signal detection (Singha et al., 2019).

Additionally, it is noteworthy that the GCI30 product pro-
vides insight only into the current actual cropping intensity;
however, it is not linked to the potential cropping cycles. To
assess the CI gaps between potential and actual situations,
climate models could be introduced to simulate the potential
cropping cycles under long-term average weather conditions.
The proposed method can be readily applied to other years
to retrieve long-term CI maps, which will fill in the knowl-

edge gaps of decades-long changes in cropping practices and
interannual variations (Iizumi and Ramankutty, 2015). Such
information is key to improving our understanding of the CI
response to climate in a more granular manner.

4 Code and data availability

The GCI30 product is available on Harvard Data-
verse: https://doi.org/10.7910/DVN/86M4PO (Zhang et al.,
2020). It is the first 30 m resolution CI dataset cover-
ing a global extent. The GCI30 product was tiled into
504 files in GeoTIFF format with geographic projec-
tion. To be precise, the spatial resolution of the prod-
uct is 0.00026949459◦. Each GCI30 tile encompasses an
area of 10◦× 10◦ and is named in the following for-
mat: “Cropping_Intensity_30m_2016_2018_$regions$.tif”.
The “regions” in the file name are determined as follows:
N/S (Northern Hemisphere or Southern Hemisphere) fol-
lowed by a two-digit latitude label of the tile’s top-left cor-
ner and E/W (Eastern Hemisphere or Western Hemisphere)
followed by a three-digit longitude label of the tile’s top-
left corner. Each GeoTIFF file includes two layers. The first
layer is the average CI during the 3 years from 2016 to
2018, with the noData value or masked areas assigned as
−1. The valid values for the first layer are 1, 2, and 3, rep-
resenting single cropping, double cropping, or triple crop-
ping, respectively. The second layer is the TNCC from 2016
to 2018 with a noData value or masked areas assigned to
−1. The continuous-cropping type or the number of crop-
ping cycles larger than three per year is assigned as 127 in
the above-mentioned two layers. We also included a shapefile
of the tiles named “CroppingIntensity_tiles_shapefile.rar” in
the repository so that users could easily find their target
tiles. The GCI30 product was generated on the GEE plat-
form using JavaScript language developed by the authors.
The GEE script as well as the auxiliary data of the GCI30
algorithm as an illustration for one tile is open to all po-
tential users and available at https://code.earthengine.google.
com/64f569c03f8fd633a896a3ec6f56b89a (Zhang and Liu,
2021). The code is openly available on the GEE platform,
but users need a GEE account to access to it.

5 Conclusions

In this study, we utilized multisource remote sensing data,
including Landsat, Sentinel-2, and MODIS data, to pro-
duce the first 30 m CI map at a global scale. Based on the
phenophase-based mapping framework, GCI30 identified CI
by enumerating the transition points between growing and
non-growing periods. To improve the CI mapping perfor-
mance on flooded rice paddies, we specifically considered
the influence of the “flooding and transplanting signal” on the
created phenophase profile. Accuracy assessments and inter-
comparisons with existing land surface phenology products
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suggested that GCI30 was reliable across different climate
zones and cropping systems. According to GCI30, we esti-
mated that the global average CI was 1.05 during 2016–2018.
We found that single-cropping systems occupied more than
80 % of the world’s cropland extent, while multiple-cropping
practices were more commonly observed in South America
and Asia than on other continents. National- and AEZ-level
statistics demonstrated the joint influence of natural and an-
thropogenic drivers in controlling CI spatial patterns in most
areas of the world. We concluded that the new GCI30 dataset
provided improved estimates of global CI in a spatially ex-
plicit manner that has not been fully captured by previous
studies or products and thus can serve to fill data gaps for
promoting sustainable agriculture and achieving SDGs.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-13-4799-2021-supplement.
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