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ABSTRACT
We proposed a modification of the existing approach for map-
ping active paddy rice fields in monsoon-dominated areas. In the
existing PPPM approach, LSWI higher than EVI at the transplant-
ation stage enables the identification of rice fields. However, it
fails to recognize the fields submerged later due to monsoon
floods. In the proposed approach (IPPPM), the submerged fields,
at the maximum greenness time, were excluded for better estima-
tion. Sentinel–2A/2B time-series images were used for the year
2018 to map paddy rice over the Lower Gangetic Plain (LGP)
using Google earth engine (GEE). The overall accuracy (OA)
obtained from IPPPM was 85%. Further comparison with the stat-
istical data reveals the IPPPM underestimates (slope (b1) ¼ 0.77)
the total reported paddy rice area, though R2 remains close to
0.9. The findings provide a basis for near real-time mapping of
active paddy rice areas for addressing the issues of production
and food security.
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1. Introduction

Among the most populous countries of the world, India stands second, residing 1.6 bil-
lion people that contribute 17 per cent of the world population with the massive demand
for food crops (Lehane 2014). Among the major cereal crops, paddy rice is among the
vital staple food grains for over half of the world population and occupies around 12% of
the global cropland area (Elert 2014; Dong et al. 2016). The global rice production, as per
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2018s FAO estimates, is about 759 million tons (FAO 2018), and the forecast pattern
shows it will continue to increase with demand keeping in pace with the increasing global
population. The combined share of China, India, Bangladesh and Indonesia to the total
global production of rice is 66%. It is expected to increase in the next decade due to the
growing population. However, there is an interannual shortfall in the production that is
happening due to weather severity, especially during the monsoon season. Periodic occur-
rence of droughts and floods in major rice-growing areas in the south and south-east
Asia due to changing climate poses an impending threat to agriculture (Mendelsohn 2014;
Miyan 2015). The IPCC report on climate change in South Asia shows a likely increase of
2� 4� C in temperature in the coming decades, and that results in an approximate
decrease of 30% in crop production (Hijioka et al. 2014). Being an important production
area of paddy rice in south Asia, the Gangetic plain - a part of the northern Indian plains
– may also face a decrease in paddy rice production. As India shares a significant portion
of the global rice production and its international marketing, the uncertainty of the paddy
rice production in changing climate may lead to future food security issues. In such con-
text, it is imperative to have adequate information on the total cropped area and its
dynamics over time in south and south-east Asia with special reference to paddy rice.

In the last two decades, a series of methods have been proposed to mapping cropped
areas, especially the irrigated rice area mapping from remotely sensed images. Several
remote sensing-based agricultural layers, including Moderate Resolution Imaging
Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS), and
Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC), are
available for mapping of paddy cultivation area from local to global scales. A range of dif-
ferent studies was done in the past to map the cropped area under paddy cultivation
through phenology-based information, derived from time-series satellite images (Dong
et al. 2016; G. Zhang et al. 2017; Zhang et al. 2015). Additionally, paddy-rice mapping
was done by using supervised Maximum Likelihood (Oguro et al. 2001), Support Vector
Machine (Xu et al. 2018), Random Forest (Qadir and Mondal 2020) and unsupervised
classifications such as Iso-cluster or K-means (Pan et al. 2010; Nguyen et al. 2012). The
use of the time-series spectral vegetation indices for crop mapping, e.g., Enhanced vegeta-
tion index (EVI), Normalized difference vegetation index (NDVI), Land surface water
index (LSWI), have an added advantage over the multispectral images because time-
driven vegetation indices represent phenological events of a crop cycle which could be
used effectively in the threshold-based algorithm for mapping paddy-rice (Shew and
Ghosh 2019; Yin et al. 2019). The time series of flooding signal (FS), derived from LSWI,
was used in several studies for identifying the rice pixels during the transplantation phase.
In contrast, time-series of NDVI and EVI were used in the early growing to harvesting
stage for mapping paddy-rice (Xiao et al. 2005; Xiao et al. 2006; Teluguntla et al. 2015;
Dong et al. 2016; Zhang et al. 2018). All of these studies evidenced effective pixel-based
mapping of rice areas using phenology-driven time-series spectral indices. A summary of
phenological pixel-based paddy-rice mapping (PPPM) using moderate to fine resolution
images, such as MODIS, Landsat 7 and 8, and Sentinel 1 and 2, is given in Table 1. Many
of these reported studies, which used coarse spatial (MODIS, 500m) and low temporal
resolution (Landsat, 16-days), have faced challenges in classifying and delineating paddy
rice pixels in the heterogeneous landscape (Gallego 2004; Zhen et al. 2013; Zhou et al.
2013). As the south and south-east Asian regions are mostly characterized by small and
fragmented paddy rice fields, the use of MODIS often results in low classification accuracy
emanating from mixed pixels containing many other types of crops (Teluguntla et al.
2015). However, the accuracy of the classification could be improved by using Sentinel-2
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dense time-series data that provides better spectral and radiometric resolutions along with
the high frequency of revisit cycle and thereby captures spatial diversity in the crop man-
agement practices (Liu et al. 2020). The PPPM was applied for paddy rice mapping in
China (Xiao et al. 2005b; Wang et al. 2015; Zhang et al. 2015), South and South-east Asia
(Xiao et al. 2006; Dong et al. 2016; Zhang et al. 2020), and in India (Teluguntla et al.
2015). These studies were conducted using varied datasets, starting from high temporal
but coarse spatial resolution (MODIS 500m) to finer spatial with lower temporal (revisit-
ing interval) resolution (Landsat-8 30m imagery) data. The magnitude of the overall accu-
racies that these studies were reported was high enough (89� 98%) to comprehend the
model’s efficacy in differentiating the paddy-rice pixels from other crop pixels. However,
it is unclear whether the PPPM model performs at the same efficacy in the Lower
Gangetic Plain (LGP), which is characterized by small landholding size – smaller than a
Landsat-8 pixels size, and frequent submergence of the field due to flood and heavy rain
due to monsoon during sowing through physiological maturity stage. For the PPPM
approach, the difference of LSWI and EVI during sowing through transplantation stages
was used to select either static or dynamic thresholds for mapping paddy rice (Xiao et al.
2005b; Peng et al. 2011). Such condition is useful in mapping paddy rice fields as paddy
rice needs stagged water for couple of weeks for growth after transplantation. However,
the mapping also includes any surface flooded with the water. This enhances the chances
of wrongly classifying the paddy rice fields. As LGP is characterized by the frequent flood-
ing events throughout the monsoon season due to periodic heavy rain, using a threshold
approach only during sowing through transplantation stage might yield an inaccurate esti-
mation of active paddy rice fields. Therefore, in this study we propose a modification to
the existing PPPM method through incorporation of the difference of LSWI and EVI later
in the middle of the crop cycle. We believe that such inclusion improves the estimation
of crop area under the active paddy cultivation. The objectives of the present study are
(a) to map the paddy rice area during the monsoon using suggested modification of
PPPM method, (b) to estimate the efficiency of the proposed method with reference to
the existing PPPM and standard machine learning based random forest classification out-
put, and (c) to compare the estimated paddy rice statistics with the national agricul-
tural statistics.

2. Materials and methods

2.1. Study area

The LGP shares the international territory between India and Bangladesh. It is one of the
world’s most extensive flood plain regions (Singh et al. 1998). In this study, we took the
Indian part of the LGP that primarily consists of the eastern Indian state, West Bengal
(Figure 1). The state of West Bengal comprises 22 districts, as mentioned in Figure 1.
Topographically, the western part of the study area is connected with the plateau fringe
with undulating topography (elevation of 400� 590m above mean sea level), while the
northern part covers Shiwalik Himalaya with elevation ranges up to 3,616m (Figure 1a).
Three major river systems, i.e., Teesta in the north, Bhagirathi-Hooghly of Ganga River in
the south, and Ajay, Damodar, and Dwarkeshwar river system in the west, feed this allu-
vial floodplain leading to an intense cropping practice. The climate of the area is governed
by the monsoon system (Attri and Tyagi 2010; Jin and Wang 2017). The study area is
characterized by frequent floods throughout the monsoon season due to the combined
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effect of heavy rainfall and the release of the water from reservoirs (Jha and Bairagya
2013), leading to crop yield loss because of submergence of the crop fields.

The total geographical extent of the study area is around 8.68 million ha, of which
5.25 million ha is the net sown area, comprising 68% of the geographical area. The study
area is known for its intense cropping practices with an average landholding size of
0.76 ha (http://matirkatha.gov.in/agricultural-scenario-in-west-bengal/). Most of the crop-
lands are under a triple cropping pattern, with rice (Oryza sativa) as the predominant
crop. The crop calendar starts with monsoon crops (Kharif crops: from July to
November) (Prashnani et al. 2014) followed by winter crops (Rabi crops: from December
to April) and ends with summer or pre-monsoon crops (Zaid crops: from May to July).
In West Bengal, the monsoon crop is dominated by paddy rice followed by redgram,
grown as a secondary crop. The winter crops are also dominated by rice, followed by
gram, lentil and wheat, and the summer crop is dominated by gram, blackgram and
pulses, including the pre-monsoon paddy rice.

2.2. Sentinel-2 multispectral data and pre-processing

In this study, Sentinel-2A/B Multi-Spectral Instrument (MSI) Top-of-atmosphere (TOA)
reflectance (Level-1C) data was used from July 2018 to December 2018. The Sentinel-2
MSI images with 10 m spatial resolution and a 5-day repetitive coverage over an area
around the globe are provided by the European Space Agency (ESA). The TOA reflect-
ance data was used due to the limited access of the Sentinel � 2 surface reflectance

Figure 1. (a) Study area: location of the Lower Gangetic Plain. A digital elevation model (DEM) shows altitude vari-
ation from east-west and north-south. (b) Land use land cover pattern.
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product before 2019. Additionally, the choice of the TOA product was guided by the
selected timeline for this study which is also steered by the availability of the statistical
data - discussed in section 2.4 – as one of the reference data for this study.

The wavelengths of the Sentinel-2 bands range from 442.3 nm to 2,185.7 nm with 10 m
(B2, B3, B4, B8), 20 m (B5, B6, B7, B8A, B11, B12), and 60 m (B1, B9, B10) spatial reso-
lutions. The time series TOA reflectance products were called in Google earth engine
(GEE) cloud computing facility - made for planetary-scale analysis (Gorelick et al. 2017),
and the corrections were made for reducing the atmospheric effect and cloud cover. The
TOA reflection was corrected by applying sensor invariant atmospheric correction (SIAC)
module, developed by Yin et al. (2019), in the GEE. The SIAC exploits operational global
datasets on bi-directional reflection distribution function (BRDF) and coarse resolution
atmospheric data to estimate surface reflection from TOA product. The method uses a
Bayesian framework to model surface reflection using standard BRDF product from
Moderate Resolution Imaging Spectroradiometer (MODIS) and atmospheric products
from Copernicus Atmospheric Monitoring Services. It gives information of aerosol optical
depth and total columnar water vapor thickness with the surface reflection from TOA
reflection product in due course of solving the inverse radiative transfer problem. After
the atmospheric correction, the cloud pixels were removed from the scenes. Since the
monsoon cloud varies in brightness over the study area, the cloud pixels were removed
based on the cloud-score algorithm (Qadir and Mondal 2020; Nanshan et al. 2021). The
total number of image before and after the cloud removal was counted within the selected
time interval of July 2018 to December 2018 and represented in Supplement Figure 1.
The removal of cloud from the images produces gap. We further processed these atmos-
pherically corrected Sentinel-2 time series images following the gap-filling process by con-
sidering the mean of total six consecutive pixels (three pixels below and three above a gap
pixel) in the time series which spans over 30 days.

The spectral indices of EVI and LSWI were computed from these corrected time series
images using Equation 1 and 2. Prior to computing the spectral indices, the SWIR-1
image layers were resampled from 20 m to 10 m with reference to other spectral channels
involved in the analysis. Moreover, a linear fit smoothing function was applied on time
series EVI and LSWI to reduce the residual effects of atmosphere emanating from cloud,
aerosols and columnar water vapour. Linear fit uses a simple moving window algorithm
where a subset of data from the whole data set is used to estimate the coefficients of lin-
ear fit (Khanal et al. 2020). The window size of the linear fit smoothing was decided based
on the R2 value. We used a window size of 20-time steps that has an R2 of 0.93 (Figure
2).

EVI ¼ 2:5ðqnir� qredÞ
qnir þ 6qred � 7:5qblue þ 1

(1)

LSWI ¼ qnir�qswir1
qnir þ qswir1

(2)

2.3. Lulc data

We used the cropland land layer from a standard global Land Use Land Cover (LULC)
classification (Figure 1(b)), available at the 10 m resolution based on Sentinel-2 data
(Gong et al. 2019). This global LULC layer was prepared using the Random Forest (RF)
classifier, where the training set contains approximately 340,000 samples across the world,
with an overall accuracy of the classification of 72.76%. The cropland pixels from this
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LULC layer were separated to build a thematic layer of cropland that was further used to
mask the time series LSWI and EVI pixels. Prior to masking, the accuracy of the cropland
mask was evaluated using the ground truth points (GTP) – discussed further in the sec-
tion 2.5. The accuracy metrices of the cropland layer from the LULC product of Sentinel
� 2 is given in Supplement Table 1.

The global permanent surface water layer – prepared from Landsat 5, 7 and 8 at 30 m
resolution - was also used in this study (Pekel et al. 2016). The purpose is to increase the
classification accuracy by removing the spectral response from the aquatic weeds which
replicates the spectral response of vegetation and cropland in the NIR and Red bands
(Silva et al. 2008; Schmidt and Witte 2010; Singh et al. 2020; Akbari et al. 2021).

2.4. Regional cropland statistics

We used the district-level net sown area (NSA) and the paddy rice area statistics during
monsoon season. The NSA, including the area statistics for different crop types for each
cropping season, is assessed by the Directorate of Economics and Statistics (DES) under
the Ministry of Agriculture (MoA), Govt. of India (http://eands.dacnet.nic.in/). The MoA
conducts yearly field surveys on the nine-fold classification of land use and land cover. It
includes the irrigated area (source wise and crop-wise) and total area under the crops at
the district level for the whole country. The DES data contain seasonal crop statistics, i.e.,
NSA of different crops, crop yield and production per year, etc. The agricultural statistics
of monsoon paddy rice was taken from DES for the year 2018.

2.5. In-situ data

A field survey was conducted in 2018 for collecting adequate training samples for con-
ducting the rice detection from Sentinel � 2. A sum of 1263 ground truth points (GTP),
which include rice and non-rice (e.g., other crops except paddy rice, vegetation, fallow
land, build-up) fields, was collected by Garmin GPS (Garmin eTrex 10; accuracy � 3.65
m). All GTPs were collected by a random sampling procedure. Out of 1263 GTPs, a total
of 665 (52.9%) GTPs were collected over paddy rice fields during the monsoon season,
and 598 (47.1%) GTPs form non-rice fields (Supplement Figure 2). For the purpose of
reducing the uncertainty of positional vector, we selected the sample paddy fields which
were within the continuous clusters of agricultural land having a size greater than 2500
m2. All of these GTPs were further visually checked using high-resolution Google Earth
and Sentinel-2 RGB composition to ensure the reliability of the data.

2.6. Precipitation data

We used daily precipitation data from Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) in support of upholding the hypothesis we made at the
beginning. Since heavy precipitation causes waterlogging situations at least for the low
lying or poorly drained areas, precipitation anomaly can reveal the spatial distribution of
potential waterlogged areas, and that helped in the detection of active paddy rice fields
from Sentinel-2. The CHIRPS-based daily precipitation product is modelled from ground-
based observations and satellite data (Funk et al. 2015). The precipitation data towards
the end of monsoon season, 20th September to 10th October, was called in GEE-interface
(Gorelick et al. 2017). We took the mean precipitation for the said time-window for the
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year 2018. The mean precipitation for 2018 was subtracted from the long-term average
from 1988 to 2017 compute the precipitation anomaly.

2.7. PPPM Algorithm and its improvement

The PPPM is a well-recognized algorithm to detect paddy rice fields from optical remote
sensing data (Xiao et al. 2005b). The paddy rice has three main phenological stages cover-
ing a period of approximately 100-120 days. The typical three stages of paddy rice over
Asia during the monsoon are a) the flooding/transplanting stage (day of the year (DOY):
213� 262 [1st August – 19th September]), b) the growth stage, which is featured by vege-
tative growth, flowering, and reproductive activity (DOY: 263� 283 [20th September –
10th October]), and c) the harvest phase (DOY: 284� 334 [11th October – 10th

December]) with mixture of bare soil and rice plant residues. In the transplanting phase,
land surface pixels are often mixed with water and sporadic green plants (Teluguntla
et al. 2015). After 50–60 days from the transplanting date, the standing water in the field,
which is approximately 2� 10 cm deep, is mostly encroached by the rapidly growing can-
opy (Xiao et al. 2005; 2006). The growth curve, at its peak, is called maximum greenness
time (MGT), which is characterized by closure of background soil through expansion of
foliar surface. Following this physical maturity stage, the leaf chlorophyll and moisture
gradually decrease and become minimum at the harvesting stage.

The spectral reflectance of the water suggests the presence of a strong water absorbance
band at SWIR (1630� 2130 nm), leading to low surface reflectance of water body in
SWIR, while it is relatively higher in the NIR channel (� 856 nm) (Jensen 2014). The
spectral response of water also shows a higher reflection in Red and a lower reflection in
NIR. Thus, a water surface yields a positive value in the spectral index of LSWI while it
gives a negative value in the spectral index of EVI. During the transplantation stage, a
high positive value of LSWI (Equation (2)) and a relatively lower EVI (Equation 1) value
suggests the presence of stagnant water in the rice field (Gao 1996). After 3� 4 weeks of
transplanting, the paddy rice fields are converted into a mixture of surface water and
paddy rice plant, as the growing canopy of the paddy rice reduce the moisture laden

Figure 2. Smoothing time series curve of spectral indices based on linear fitting. (a) An example of linear fit over
enhanced vegetation index (EVI) using different window size, (b) The measurement of goodness of fit using coefficient
of determination (R2) for different window size. For the purpose of smoothing the time series spectral index was
taken from 1st April 2018 to 31st December 2018.
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background soil surface area and enhance the reflectance in the NIR channel, leading to
increase in EVI signal in comparison to LSWI. The PPPM, as given by Xiao et al.
(2005b), hypothesized that a temporary inversion of vegetation index leads to mapping of
the flooding and transplanting pixels, and thus, it uses a conditional approach combining
LSWI, NDVI and EVI (Equation (3)) for identifying the flooded paddy rice pixel during
the transplantation stage. For this study, we used a combination of LSWI and EVI at the
transplantation stage. A constant of 0.05 was used in Equation (3), as proposed by Xiao
et al. (2005b), for considering the fact that the difference of EVI and LSWI must be less
than 0.05 or 5% for a range of different statuses of soil-water-vegetation complex at the
time of transplantation of paddy rice (EVI – LSWI � 0.05). The EVI was chosen over
NDVI due to its better sensitivity to the rich biomass content that is generally achieved
within 4� 5 weeks after transplantation (Huete et al. 2002). We further used a modified
form of Equation (3) at the MGT stage, which mathematically remains similar, but the
condition that is used here (Equation (4)) is different from Equation (3). The paddy rice
pixels can be identified during the transplantation stage by selecting a value greater than
0 – given in Equation (3) - from the time series of the difference of LSWI and EVI.
However, as the beginning of the paddy rice during monsoon is associated with the fre-
quent flood, the chance of satisfying the criteria, expressed in Equation (3), by other
standing crops is unavoidable. Despite of having differences in the mean vegetation vigore
– manifested by average EVI for the whole crop cycle – the crops, other than paddy rice
in the monsoon season, which do not need waterlogged situation at the beginning of their
phenological cycle, may classified under paddy rice due statisfcation of critetion stated in
Equation (3). To deal with this issue and correctly classify the rice pixels, we used the fol-
lowing adjustment in the existing PPPM: a condition of [(LSW þ0.05) – EVI]< 0 for
mapping the paddy rice pixels was added towards the MGT stage (Equation (4)). Such
condition helps to separate any crop fields submerged due to the presence of residual
floodwater by the time of MGT from active paddy rice fields. Hereafter, the suggested
improvement over the existing PPPM is called improved PPPM (IPPPM). Given the
threshold conditions and prior assumption, i.e., LSWI could not be greater than the EVI
during the MGT period, the non-rice, including some of the paddy rice crop pixels, which
are flooded, could be discriminated from the active paddy fields when [(LSWI þ0.05) –
EVI]> 0. A schematic representation of the methodology of this study is given in
Figure 3.

Transplantation :
1, LSWI þ 0:05ð Þ � EVI

� �
or, LSWI þ 0:05ð Þ � NDVI

� �
>0 ¼ Paddy rice

0, f LSWI þ 0:05ð Þ�EVIgor, LSWI þ 0:05ð Þ � NDVI
� �

<0 ¼ Non�paddy rice

(

(3)

MGT :
0, f LSWI þ 0:05ð Þ�EVIg>0 ¼ Non�paddy rice
1, f LSWI þ 0:05ð Þ�EVIg<0 ¼ Active Paddy rice

�
(4)

A plot of samples of EVI, LSWI and [(LSWI þ 0.05) – EVI], meeting these criteria, is
given in Figure 4. Time series layers were prepared for [(LSWI þ 0.05) – EVI] from EVI
and LSWI, and above-stated conditions were run for all layers to identify the potential
paddy rice pixels during the transplantation stage that we considered from 4th July to 10th

September, 2018. The process produced a binary layer of paddy rice and non-paddy rice.
This binary layer was later used to mask pixels from time series [(LSWI þ 0.05) – EVI]
layer during the MGT (September, 20th - October, 10th), and the second condition – given
in Equation (4) – was used to filter out the candidate pixels which were still in submerged
condition, leading to correctly identify the paddy rice pixels. These two sets of date
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ranges, i.e., timelines for transplantation and MGT, were used as the average timeline
based on the information gathered during the field survey, including a detailed examin-
ation of smoothed time series curves of EVI and LSWI. To compare the results of the
proposed IPPPM, we estimated the paddy rice area during monsoon using PPPM, as

Figure 3. Experimental setup for paddy rice mapping over the LGP during monsoon.

Figure 4. Time series curves of EVI, LSWI and LSWI-EVI, observed over single, double, and triple cropping patterns.
For the purpose of demonstrating the variation of time signals over different cropping patterns, the time series length
was increased from June 2018 to May 2019. The vertical SFS line represents start of flooding season, and EFS line rep-
resents end of flooding season during monsoon season. The cropping patterns on which the ground truth points
were taken are given as followings: RGF¼ Rice-groundnut-fallow, RRF¼ Rice-rice-fallow, RPS¼ Rice-potato-sesame,
RFF¼ Rice-fallow-fallow, RWF¼ Rice-wheat-fallow, RMJ¼ Rice-mustard-jute.
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given in Equation 3 using EVI only. The area coverages of the paddy rice - at the district
level - estimated from both these methods were then compared with the MoA reported
area statistics under paddy rice.

2.8. Random Forest classification

We further compared the results of the proposed IPPPM with the machine learning-
based Random Forest (RF) classification. The RF is a nonparametric and distribution-
independent supervised classifier (Bargiel 2017). Modified from a single decision tree,
the RF is featured by an ensemble of decision trees that used bootstrapping and bag-
ging techniques for training the model (Breiman 2001). Because of its superior per-
formances over other standard classification approaches, it was extensively used in
studying the LULC and crop type mapping ( Hao et al. 2015; Li et al. 2015; Belgiu
and Csillik 2018; Pelletier et al. 2016; S. Wang et al. 2019; L€ow et al. 2018; Rudiyanto
and Soh 2019).

The time series images of spectral indices such as LSWI and EVI – during transplant-
ation through harvesting stage (July to December) - were used as input variables in the
RF model. A sum of 11 image tiles of Sentinel � 2 were used in training and evaluating
the RF classification model. Of these 11 image tiles, 3 tiles – from the central plain of the
study area where most of the variations of crop and non-crop categories were observed -
were used for training the RF model (Supplement Figure 2). The remaining 8 image tiles
were used for testing the classification model. A sum of 72 time series (36 images of
LSWI and 36 images of EVI) images per Sentinel-2 image tile were used, and it turned
out to be 216 (3� 72) time series images for training area and 576 (8� 72) images for
test area. A sum of 1,257 GTPs used for the RF classification. 70% (880 GTPs in which
478 and 402 GTPs were labelled as paddy and non-paddy rice targets, respectively) of
these GTP were used to extract the samples of spectral indices (i.e., LSWI and EVI) from
the training image tiles for building the model. Whereas, the sample observations of rest
of the 30% GTPs (187 and 190 GTPs were labelled as paddy rice and non-paddy rice,
respectively) were used from testing image tiles for model validation. The RF classification
was performed on the Jupyter notebook using Python packages such as geemap (v0.8.16)
(Wu 2020) and Sci-kit learn (v0.24.4).

2.9. Feature selection

A total of 72 temporal chronological feature layers of EVI and LSWI were used as input
to build the RF classification model. The model was optimized based on the measure of
mean decrease in accuracy (MDA) for selecting ideal number of feature layers. We used
hyperparameter tuning with 10-fold cross-validation to get the optimum number of fea-
tures from a set of 72 chronological features. The best-resulted parameters are – number
of tree (ntree): 150, maximum depth (max_depth): 5, maximum features (max_features):
7, maximum leaf nodes (max_leaf_nodes): 10, minimum samples in the leaf (min_sample-
s_leaf): 3, and minimum samples for splitting each decision node (min_samples_split): 3.
We have performed a feature selection step to filter the most contributed features based
on MDA. The process turned out with a total of 24 important features, which contributed
significantly to the classification.
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2.10. Validation and comparison

The accuracy of the results from the IPPPM was evaluated in three different ways: (1) an
error matrix was calculated between GTP and predicted paddy rice pixels, (2) the area sta-
tistics derived from both IPPPM and PPPM models were compared with the reported
area under paddy rice from DES, Govt. of India, and (3) the performance of IPPPM algo-
rithm-based classification were compared with RF-derived paddy rice map. It is to be
noted that, for assessing the accuracy of the outcome from the IPPPM approach, the
GTPs were used only from crop fields. Thus, the total number of GTP used for assessing
the accuracy is 953.

Two measures, such as Area Difference (AD) and Percentage of Area Difference
(PAD), were used to show the magnitude of error between the Sentinel-2-derived paddy
rice area using the IPPPM algorithm and DES-reported paddy rice area (Equation 5-6).

AD ¼ ASentinel � ADES (5)

PAD ¼ ASentinel�ADES

ADES
� 100% (6)

where ASentinel and ADES represent the area statistics from Sentinel and DES. Moreover, to
compare the model performances with reference to DES statistics, the measures of root
mean square error (RMSE) and Chi-square statistics were used.

3. Results

3.1. Spatial distribution of paddy rice area in the lower gangetic plain

The paddy rice area during the monsoon period through the IPPPM approach is meas-
ured at around 2.98 million ha (mha), which is about 56.72% of the net sown area. The
spatial distribution of mapped paddy rice area, shown in Figure 5, manifests that the terri-
tories in the central plain and south-east part of the West Bengal, i.e., Medinipur (East),
Medinipur (West), Hooghly, Bardhaman (East), Bardhaman (West), Bankura, Birbhum
and South 24-Parganas, respectively, share a significant amount (> 60%) to the NSA
(Table 2). In comparison, the territories in the northern part of West Bengal share less
than 50% to the NSA.

3.2. Accuracy assessment

The overall accuracy estimated from IPPPM is about 85%, including producer’s (PA) and
user’s accuracy (UA) of 97% and 82%, respectively for paddy rice, and PA and UA of
65% and 93% for non-paddy rice (Table 3). The RF model, with 24 best-featuring varia-
bles and a mean out-of-bag error of less than 0.05 (Figure 6(a) and (b)), shows an overall
accuracy of 88% for separating paddy rice and non-paddy rice fields, including PA and
UA of 90.3% and 85.5% for paddy rice, and 86.5% and 91%, respectively for non-paddy
rice (Table 3). For all optimized featuring variables in the RF classifier, the contribution
of LSWI during September to December overwhelmed the others. The ROCs, as derived
from the RF model for both paddy rice and non-paddy rice, show high TPR, including
AUC more than 0.9 (Figure 6(c)), suggesting a good level of agreement with the in-situ
observations.
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3.3. Comparison among PPPM, IPPPM, and RF models with DES statistics

The paddy rice area, estimated through the PPPM, is about 3.09 mha, while after applying
the correction through the IPPPM method, about 2.98 mha paddy rice area is estimated.
The difference is around 0.11 mha between the PPPM and IPPPM approaches. The differ-
ence is generated from the elimination of paddy fields following Equation (4) due to stag-
nation of rain water at the MGT stage. At the district level, the estimated paddy rice areas
from IPPPM, including the amount of area from the PPPM approach, shows the territo-
ries in the south of West Bengal (South 24-Parganas, Medinipur (East), North 24-
Parganas, Murshidabad), with average elevation less than 10 m, suffers mostly from water-
logging condition due to monsoon rain leading to loss of active paddy rice area (Figure
7). The results also demonstrate that, besides the territories mentioned above, a small
amount of paddy fields is affected too either by flood or by water logging due to heavy
rain in the rest of the districts. Supplement Figure 3 demonstrates evidence of this water
logging due to heavy rain during the MGT stage.

Figure 5. Spatial distribution of paddy rice fields derived from Sentinel-2 datasets in the lower part of Ganga River
Basin during monsoon 2018.
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The estimated paddy rice area from the RF model is 4.93 mha, notably higher than the
area estimated from both PPPM and IPPPM methods. The degree of correlation between
the modelled paddy rice area, from PPPM, IPPPM and RF, and reported area from DES
during the monsoon season demonstrated (Figure 8) that RF gives the best estimate with
R2 of 0.98. While the overall performances of PPPM and IPPPM are not significantly dif-
ferent (R2 ¼ 0.90 for PPPM and 0.91 for IPPPM) as the model comparison through Chi-
square (v2) test reveals a v2 value of 1.67, which is less than the critical value of 11.59 at
the p-value of 0.05 with 21 degrees of freedom. Yet, there is a credible difference in the
magnitude of RMSE for PPPM (54885.1 ha) and IPPPM (58854.8 ha) results. The PAD of
the estimated paddy rice area from IPPPM and DES shows a difference of about 1.02
mha (Table 4). The PAD at the district level shows many of the northern territories,
including some in the south and south-west of the study area, have more than 30% differ-
ence. However, the PAD for the territories - belong to the central-plain – exhibit fewer
than 25% difference.

Table 2. District wise net sown area, taken from the statistical database of Directorate of Economics and Statistics
(DES), Ministry of Agriculture, and percentage of paddy rice area derived from the IPPPM approach.

District
Net sown

area (NSA) (1,000ha)
Sentinel-2

Paddy Rice (1,000ha)
% paddy rice area

with respected to NSA

Alipurduar 135.27 48.82 36.09
Bankura 339.87 223.2 65.67
Birbhum 326.53 209.38 64.12
Cooch Behar 256.93 149.43 58.16
Dinajpur (North) 273.84 122.23 44.64
Dinajpur (South) 187.49 91.99 49.06
Darjeeling 115.27 14.73 12.78
Hooghli 210.89 130.57 61.91
Howrah 82.22 46.26 56.27
Jalpaiguri 203.77 83.91 41.18
Jhargram 137.87 94.95 68.87
Kalimpong 23.26 0.29 1.25
Malda 233.68 95.08 40.69
Murshidabad 398.34 216.11 54.25
Nadia 293.57 91.18 31.06
North 24-parganas 230.94 89.54 38.77
South 24-parganas 358.44 277.65 77.46
Barddhaman (East) 400.04 318.26 79.56
Barddhaman (West) 55.04 42.09 76.47
Medinipur (East) 286.6 184.46 64.36
Medinipur (West) 383.88 298.13 77.66
Purulia 313.61 147.84 47.14
Total 5247.33 2976.10 56.72

Table 3. Accuracy error matrix in the monsoon season for IPPPM, and Random Forest-based classification methods.

IPPPM
Paddy rice Non-paddy rice Total User’s Accuracy Overall Accuracy Kappa

Paddy rice 592 122 714 0.82 0.85 0.66
Non-paddy rice 15 224 279 0.93
Total 607 346 953
Producer’s Accuracy 0.97 0.65

Random Forest
Paddy rice Non paddy rice Total User’s Accuracy Overall Accuracy Kappa

Paddy rice 160 27 187 0.85 0.88 0.76
Non paddy rice 17 173 190 0.91
Total 177 200 377
Producer’s Accuracy 0.9 0.86
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Figure 6. (a) Variable importance of selected features of spectral indices explained through mean decrease accuracy,
(b) out-of-bag error for random forest-based model, (c) receiver operating curve (ROC) for showing accuracy estimated
through RF-based model.

Figure 7. Extracted paddy rice area by IPPPM approach and the difference of paddy rice area estimated from PPPM
and IPPPM methods.
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4. Discussion

The PPPM-based algorithm detects the paddy rice pixels work reasonably well at the glo-
bal scale (Xiao et al. 2005; Xiao et al. 2006). However, it faces some critical issues in iden-
tifying the paddy rice areas in monsoon Asia. The major issues related to this are, 1) the
time series curve of paddy rice, mapped through LSWI and EVI, during the transplanting
stage is similar to wetland or any waterlogged surfaces after precipitation, 2) often, after a
short period of the transplantation stage, due to the occurrence of flood, the paddy fields
are left untreated due to continued waterlogging leading to loss of production. In dealing
with such issues, especially in monsoon dominated areas, the mapping of paddy rice
through the PPPM-based approach might fail to estimate actual paddy rice area under
active cultivation. In this study, we have modified the existing PPPM approach by allow-
ing an additional criterion during the MGT stage (Equation (4)). The inclusion of the dif-
ference of LSWI and EVI at the MGT stage and its conditional criterion has efficiently
mapped the active paddy rice area by excluding the submerged pixels. This results in a
lower estimation of the total paddy rice area, which remains notably higher in the con-
ventional PPPM approach. To show evidence of such overestimation, four spatial win-
dows were selected, as given in Figure 9. The identified rice pixels through PPPM in
those spatial windows are considered paddy rice as they were submerged during the trans-
plantation stage. A notable amount of these pixels is still appeared with a high LSWI
value in the MGT, suggesting that they are either destroyed (due to submergence) paddy
rice fields or non-paddy rice areas with stagged water (Figure 9(b)–(i)). Further analysis
of the precipitation anomaly through CHIRPS data at the MGT during monsoon 2018
suggests that about 74% of the area have faced negative rainfall anomaly, while some of
the areas in the northern and southern part of West Bengal – amounting to about 26% of
the total area - have faced positive rainfall anomaly (supplement material, Figure 4).
Many of these areas, as evidenced in Figure 9, show signs of waterlogging during the
MGT stage. Therefore, the occurrence of heavy rain, irrespective of rainfall anomaly, dur-
ing the MGT stage is associated with the waterlogging condition due to the flat alluvial
terrain (supplement material, Figure 3).

The evaluation of the performance of IPPPM with reference to PPPM and standard
RF-based classification model, while comparing the results with DES statistics, suggests
the RMSE is higher for IPPPM (58854.8 ha) as compared to PPPM (54885.1 ha) and RF
(51064.1 ha) since it excludes the submerged pixels due to their potential loss. A high
degree of association of estimated paddy rice area (slope (b1) ¼ 1.2 with R2 ¼ 0.98) from

Figure 8. Scatterplot showing relationship between statistical data on monsoon paddy rice from Directorate of
Economics and Statistics (DES) and (a) PPPM-derived paddy rice area, (b) IPPPM-derived paddy rice area and (c) RF
model-based paddy rice area.
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the RF-based model, with reference to DES area statistics, suggests RF overestimates the
paddy rice area. Such a higher degree of association is also attributed to the large training
set with sufficient spatial variation in the rice varieties, including the hyper-tuning param-
eters optimized during the training stage. The estimated area from PPPM and IPPPM, on
the other hand, remains largely underestimated with reference to DES statistics as the
estimated slope value for both of them remains below 0.8 (Figure 8a, 8b). One of the rea-
sons for such underestimation is linked to the condition in Equation (4) used to identify
the paddy rice pixels. The diurnal cycle of standing water in the paddy rice fields is what
makes the fields identifiable through the mathematical condition of PPPM. However,
when the satellite passes over an area, the absence of standing water resulting in a nega-
tive difference of LSWI and EVI (Equation (4)) shortly after the transplantation stage.
Such physical condition resulting in the noted underestimation in the paddy rice area. In
conjunction with that, the plausible source of underestimation could be related to the
cropland layer used in this study from Sentinel-derived LULC product. Moreover, the
inconsistency in season-wise official reporting of the area under paddy rice by DES is
contributed to the noted difference. The inclusion of the additional criterion during the
MGT stage in the IPPPM approach, which led to the exclusion of the submerged pixels
from the target cluster pixels of paddy rice, caused further loss of paddy rice pixels.
Nevertheless, it holds a map of the paddy rice area under active cultivation. For PPPM
and RF-based output, the traces of such active paddy rice pixels, given the occurrence of
flood conditions, are less likely. Figure 10 shows an apparent difference of the mapped
paddy rice between IPPPM and RF-model with reference to DES statistics. The compari-
son of the model outputs shows RF-based classification model performs better than
IPPPM model though it needs a large volume of training data with adequate quality. The
implication of IPPPM can overcome these constraints through a simple approach of con-
ditional thresholding. A plethora of studies existed on the rice area mapping at different
spatial scales in the last decade; nearly all of them used automated to semi-automated
methods of machine learning (Nanshan et al. 2021; Chen et al. 2020; Gumma et al. 2020;
Htitiou et al. 2019; Zhang et al. 2018), deep learning (Shao et al. 2001; Chen and Mcnairn

Figure 9. The time series spectral indices shown in four selected spatial windows from sowing through the stage of
maximum greenness time (MGT). In all these windows the difference of LSWI-EVI at the MGT stage remains positive,
suggesting the paddy rice pixels are submerged under water.
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2006), spectral matching (Gumma et al. 2014), pixel and object-based method (Belgiu and
Csillik 2018) and unsupervised clustering algorithms (Panigrahy et al. 2010). The majority
of these works – for rice area detection from remote sensing images – are band-depend-
ent with a single or a cluster of images. The phenological advancement with changing
moisture conditions was deeply undermined in these works. However, in 2005, Xiao et al.
(2005b, Xiao et al. 2006) provided a strong foundation for the PPPM approach for paddy
rice area detection. This simple mathematical algorithm worked fairly well for monsoon
Asia as well as for the global paddy rice area mapping. Yet, it is not capable enough to
map active paddy rice areas during the monsoon season in the regions where floods are
an integral part of the agricultural system. The submergence of the cropped area due to
monsoon rain and the periodic release of stored water in reservoirs causes a range of
flood events that vary in severity. The loss of the paddy rice fields due to such events dur-
ing the post-transplantation through the MGT stages was not considered in the PPPM
approach so far. The inclusion of flood effect in the form of prescribed modification dur-
ing the MGT stage within the PPPM is what makes IPPPM approach effective in mapping
the active paddy rice area during the monsoon season; the problem of underestimation
with reference to DES statistics remains unavoidable, though. Dong et al. (2016) showed
exclusion of flooded pixels during the monsoon season improved the model’s accuracy
and produced more reliable results. Teluguntla et al. (2015) also applied the PPPM
approach on 8-days MODIS-EVI and LSWI over the Krishna River basin (KRB) in south
India to map the paddy rice area. Since there is a difference in monsoon rainfall charac-
teristics between KRB and LGP, the prolific flood pixels are absent in the KRB, whereas
they are abundant in the LGP. Therefore, the suggested modification is pertinent for near
real-time mapping of the active paddy rice area in this part of the LGP. With the avail-
ability of the GEE cloud-based computing facility that allows planetary-scale analysis
through parallel processing in multiple GPUs, mapping of the near real-time rice field,

Figure 10. A comparative spatial plot of the outcomes from Random Forest model and IPPPM model.
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especially during the monsoon season, through the IPPPM approach provides up-to-date
areal coverage of paddy rice.

5. Conclusion

The study fosters the strength of the high-resolution Sentinel � 2 time-series images with
five days of repetitive coverage to mapping a high-resolution paddy rice area during the
monsoon season at a 10 m scale. Since monsoon in the LGP is featured with frequent
flooding, mapping paddy rice area during this season from space-based optical images
needs special effort to enhance the accuracy for area estimation. The present study
addresses this specific issue by bringing modifications to the existing PPPM approach.
The study also deals with the problem of cloud cover that is persistent over the study
area during monsoon. After atmospheric correction and screening off the cloud from the
scenes, the residual effect was minimized through linear smoothing by selecting the best
fit time window. Such smoothing helped to restore the temporal signal of vegetation indi-
ces (i.e., EVI and LSWI) which, otherwise, would have lost their identity as crop pixels.
The results suggest a wide variation of spatial-scale accuracy from north to the south of
the study area with reference to the statistical data. Yet, the validation of the model’s out-
come – in terms of the point-based accuracy - remains fairly similar to the RF-based
result. Based on the outcome, we conclude that there is topographic control that led to
the higher amount of offsets with respect to statistical data for territories belong to moun-
tainous and residual-hill regions. The findings also led to the conclusion that the IPPPM
approach estimates a lesser amount of paddy rice area in comparison to the conventional
PPPM approach due to the exclusion of flooded fields during the MGT stage, though the
principle of identification of paddy rice remains the same for both the approaches.

With prolific flood events in the monsoon period, the proposed IPPPM approach - as
manifested in the results - is an appropriate method in mapping active fields under paddy
rice cultivation in the LGP. For periodic active rain-spells of the south-west monsoon
wind, the areas, elsewhere in the world, featuring with poor drainage condition can face
similar waterlogging condition for the paddy fields. Therefore, the present experimental
setup could be transferred to other areas, preferably to the rice growing areas in the south
and south-east Asia where monsoon rainfall plays a vital role for paddy rice cultivation.
The findings of this study also suggest, despite having a quality of underestimation in
terms of areal coverage, the outcome of the IPPPM method is not significantly differed
from other standard approaches, and such an evidence indicates towards the efficacy of
this modified approach in mapping active paddy rice at different spatial scale. The GEE-
based cloud computing facility, in this connection, provides an opportunity for near real-
time mapping of the active paddy rice area. Therefore, the periodic monitoring of the
active paddy rice area through the IPPPM approach has a direct linkage to the total pro-
duction and yield variation over the years while addressing the issues of food security and
availability and price of the rice in the market at the same time.
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