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Abstract: An urban agglomeration is the engine of regional and national economic growth, but also
causes many ecological and environmental issues that emerge from massive land changes. In this
study, the spatiotemporal evolution of an urban agglomeration was quantified and its impacts on the
urban and regional landscape patterns were evaluated. It showed that the urbanized land area of
the Pearl River Delta Urban Agglomeration (PRDUA) in China nearly quadrupled, having linearly
increased from 1819.8 km2 to 7092.2 km2 between 1985 and 2015. The average annual growth rate
presented a bimodal wave-like pattern through time, indicating that the PRDUA has witnessed two
rounds of the urbanization process. The growth modes (e.g., leapfrog, edge-expansion, infilling) were
detected and they exhibited co-existing but alternating dominating patterns during urbanization,
demonstrating that the spatiotemporal evolution of the urban development of the PRDUA follows the
“spiral diffusion-coalescence” hypothesis. The morphology of the PRDUA presented an alternating
dispersal-compact pattern over time. The city-level and regional-level landscape patterns changed
synchronously with the spatiotemporal evolution of the PRDUA over time. The urbanization of the
PRDUA increased both the complexity and aggregation of the landscape, but also resulted in an
increasing fragmentation and decreasing connectivity of the natural landscape in the Pearl River
Delta region. These findings are helpful for better understanding how urban agglomerations evolve
and in providing insights for regional urban planning and sustainable land management.

Keywords: urban agglomeration; urban growth; landscape expansion index; diffusion and coalescence
hypothesis; spatiotemporal evolution; Pearl River Delta; PRDUA

1. Introduction

Cities concentrate a large amount of labor, information, and financial resources [1,2].
They contributed nearly 85% of the global gross domestic product (GDP) in 2015 and are
thus the engines of economic growth and social change [3]. In 2018, 55% of the world’s pop-
ulation inhabited urban areas, and this is predicted to rise to 68% by 2050 [4]. As the world’s
most populous country, China has experienced accelerating urbanization in the past few
decades, leading to large built-up areas replacing the natural landscapes [5]. Such urbaniza-
tion has brought tremendous stress onto the environment and natural resources [6–8], and
has affected ecosystem functions and services from the local to global scale [9]. Therefore,
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monitoring and quantifying the evolution of the spatiotemporal patterns of urbanization is
essential in order to understand the impacts of urbanization on the natural environment
and ecosystems [8,10–13].

With the rapid urbanization processes that have occurred in the past few decades,
many urban agglomerations, such as the Yangtze River Delta urban agglomeration (YR-
DUA), the Pearl River Delta urban agglomeration (PRDUA), and the Greater Tokyo Area in
Asia; the Greater London Area in Europe; the New York Metropolitan Area and the Greater
Chicago Metropolitan Area in America (the USA), etc., have emerged worldwide [14].
Urban agglomerations have emerged as the new engine to facilitate economic growth and
play an important role in promoting sociocultural and technological developments at the
international, national, and regional levels [2,14]. At present, there is no consensus on
the definition of what an urban agglomeration is, but it is considered to be a functional
polycentric network that consists of multiple highly integrated metropolitan areas and
lower-density peripheral areas within its boundaries [2,15]. An urban agglomeration orig-
inates from multiple individual cities of different sizes, each of which may experience
a unique spatiotemporal growth pattern. Therefore, it is essential to quantify how the
individual city grows spatially in order to better understand how cities evolve into an urban
agglomeration [10,11,16,17]. Many studies have characterized the spatiotemporal patterns
of urban growth at the national, regional, and city levels [16,18–21]. In the last decade,
there has been increasing interest in investigating the spatiotemporal patterns of the urban
growth of urban agglomerations [22–32]. However, most of these studies utilized data
spanning very limited time periods, and thus can only identify some spatial and temporal
episodes of the urban agglomeration evolution. How the urban agglomeration evolved
and what its spatiotemporal growth trajectory is over multiple decades remain unclear.

Urban growth can present diverse spatial and temporal patterns and exhibit complex
urban morphological dynamics during urbanization processes. Urban growth pattern
dynamics are usually characterized by different growth modes, including leapfrog, edge-
expansion, infilling, and their variants or hybrids [33,34], as well as spatial expansion
over time [35–38]. Urban expansion usually exhibits a wave-like pattern, which has been
observed in many cities worldwide [38–43]. Consequently, urban forms often display alter-
nating diffusion and coalescence patterns, following the diffusion-coalescence hypothesis,
which posits that urban growth can proceed in a diffusion mode, in which new urban areas
are disconnected from the existing urban areas, or in a coalescence mode, where new urban
growth fills in gaps, thus connecting previously disjointed urban areas [42]. Li et al. [16]
developed a framework to quantify the spatiotemporal patterns of urban growth using
the speed, growth mode, and landscape metrics derived from time series land-use data,
and to test the diffusion-coalescence hypothesis. They found that the urbanization process
in the central Yangtze River Delta region presented a spiraling process of diffusion and
coalescence, rather than a dichotomous diffusion-coalescence alternate process, and thus
proposed a spiraling diffusion-coalescence hypothesis. This hypothesis has been tested
in three urban agglomerations in Switzerland [28]. However, some studies found that
the diffusion-coalescence hypothesis held for some other urban agglomerations, such as
the Beijing-Tianjin-Hebei Urban Agglomeration (BTHUA) in China [30] and Kolkata Ur-
ban Agglomeration in India [26]. Therefore, whether the spiraling diffusion-coalescence
hypothesis fits other urban agglomerations is still unclear.

Changes in landscape patterns are widely considered not only as one of the urban-
ization consequences [16,44], but also as a cause of many ecological and environmental
issues [45–48]. Landscape metrics have been widely used to quantify landscape patterns
and the urban form [49–53]. Most previous studies are based on an individual city or
cities, and showed that urbanization leads to landscape fragmentation, disconnection, and
shape complexity [54–56]. Few studies focus on the entire urban agglomeration. Recent
studies investigated the impacts of the urbanization of urban agglomerations on landscape
patterns, but their results still focused on the analysis of individual cities. For instance,
Xu et al. [25] found that rapid urbanization profoundly changed the spatial and temporal
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patterns of the urban landscape of seven cities in the PRDUA. The landscape metrics
exhibited several distinct temporal trajectories, including a monotonous increase, and
single–hump shaped and double–hump shaped patterns for different cities, while urban
expansion had led to the fragmentation of green spaces, farmland, and grassland in the
BTHUA, China [57]. However, how the spatial and temporal evolution of the entire urban
agglomeration influences the urban and regional landscape patterns remains unclear.

The PRDUA is the fastest-growing metropolitan region in China [25] and has been
undergoing a rapid urbanization process since China’s reform and opening-up and Deng
Xiaoping’s “coastal development strategy” in the late 1970s [58], which transformed large
farmlands and forests into an impervious surface [59]. Thus, it is an ideal area to investigate
how a Chinese urban agglomeration has evolved over the past few decades. This study
aims to investigate the spatiotemporal dynamics of urban growth in the PRDUA and
their impacts on the urban and regional landscapes. We specifically address the following
questions: (1) What are the evolution patterns of the PRDUA over space and through time?
(2) Does the PRDUA follow the spiraling diffusion-coalescence hypothesis? (3) What are
the impacts of the urban agglomeration evolution on the urban and regional landscape
patterns of the PRDUA?

2. Materials and Methods
2.1. Study Area

The PRDUA is located in the lower reaches of the Pearl River in Guangdong Province,
China, and borders the Hong Kong and Macao Special Administrative Regions. Ac-
cording to the Outline of the Reform and Development Plan of the Pearl River Delta
Region (2008–2020) [60], the PRDUA encompasses nine independent but highly intercon-
nected cities, i.e., Guangzhou, Shenzhen, Zhuhai, Foshan, Jiangmen, Dongguan, Zhong-
shan, Huizhou, and Zhaoqing (Figure 1). The PRDUA covers an area of approximately
55,300 km2 and has a typical subtropical monsoon climate. The GDP of the PRDUA had
reached CNY 6.25 trillion (nearly USD 0.983 trillion) by the end of 2015, more than seven
times that in 2000 (CNY 847.13 billion). The resident population of the PRDUA increased
from 42.89 million in 2000 to 58.74 million in 2015 [61], resulting in rapid urbanization
in the PRDUA. At present, the PRDUA, as one of China’s three major world-class urban
agglomerations (the other two are the BTHUA and the YRDUA), is a pioneer region, im-
plementing China’s reform and opening-up strategies, and is an important economic hub
of China [60]. As the main body of the emerging Guangdong-Hong Kong-Macao Great
Bay Area, the PRDUA plays a remarkable leading role in promoting regional cooperation
and integration, as well as in driving national economic development [59]. Therefore,
analyzing the spatiotemporal evolution of the PRDUA is beneficial to guide sustainable
urban planning and land-use management of emerging urban agglomerations.

2.2. Data Sources and Re-Processing

Urban growth is defined here as the expansion of urbanized land, i.e., the conversion of
non-urban areas to urban areas [62]. Urbanized land refers to the impervious surface within
urban administrative boundaries, mainly including residential, industrial, transportation,
public facilities, and other land-use types [18,63]. The proportion of urbanized land has
been widely used as another kind of index for measuring the urbanization degree in a city
or a country [30,64–66]. In this study, the yearly urbanized land data covering the entire
PRDUA between 1985 and 2015 were derived from the global annual urban dynamics
(GAUD) dataset with a 30 m spatial resolution, which was developed by Liu et al. [67]. The
original dataset includes yearly urbanized land, non-urbanized land, and green recovery
land, and has an overall accuracy of 76% (1985–2000) and 82% (2000–2015) for the humid
regions (accounting for over 90% of global urban lands) [67]. The dataset has been widely
utilized to study urban growth [68–71] and can be freely downloaded [67]. To investigate
the spatiotemporal evolution of the landscape of the PRDUA, the original dataset was
processed using the following procedures.
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Figure 1. The location (a) and administrative divisions (b) of the study area, the blue area covers the
nine cities in the PRDUA.

Firstly, the time-series data of urban and non-urban land use during 1985–2015 was
divided into six equidistant time periods, including 2015–2010, 2010–2005, 2005–2000,
2000–1995, 1995–1990, and 1990–1985, to match the China national “5-Year Plan” [21]. The
land-use maps of urban and non-urban areas were then extracted from the original raster
images in the years of 1985, 1990, 1995, 2000, 2005, 2010, and 2015, respectively. Secondly,
we used administrative boundaries to clip the land-use map to generate land-use types of
urban and non-urban for the study area. The administrative boundaries and divisions of
the cities in the PRD region were downloaded from the National Geographic Information
Resources Catalogue Service System of the Ministry of Natural Resources of China [72],
and the Ministry of Civil Affairs of the PRC [73], respectively. Thirdly, the original land-use
map contains numerous small patches, some of them may be noise pixels and must be
excluded. We used the method proposed by Wu et al. [21] and adopted the 3 × 3 majority
filter in ArcMap 10.7 to reprocess the maps of 2015, 2010, 2005, 2000, 1995, 1990, and 1985
to exclude the noise pixels. These seven reproduced maps of the PRDUA were used for
calculating various landscape metrics and urban growth rates. The Figure 2 showed the
steps of the data-processing in this study.

2.3. Quantifying Urban Growth Rate of the PRDUA

Equation (1) was used to calculate the annual growth rate of urbanized land (AGRUL)
and the urban growth rate over the past 30 years [16]:

AGRUL =

(
n

√
ULt+n

ULt
− 1

)
× 100% (1)

where ULt+n and ULt are the areas of urbanized land in year t + n and t, respectively.

2.4. Measuring Growth Modes of the PRDUA

Urban growth generally exhibits three major types of growth modes, i.e., leapfrog,
edge-expansion, and infilling [35,36,38]. Leapfrog refers to newly increased urbanized
land occurring in areas beyond the existing urbanized land. Edge-expansion means that
the newly grown urbanized land extends at the edge of the existing urban land. Infilling
denotes that the new urban patches emerge in areas surrounding the existing urbanized
land [16,36]. The Landscape Expansion Index (LEI) was used to model the urban growth
modes in the PRDUA, and was calculated using Equation (2) [16,36]:

LEI = 100 × A0

A0 + Av
(2)
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where A0 is the intersection between a predefined buffer zone of the new urban patch and
an existing urban patch. Av is the intersection between the existing non-urban area and
the buffer zone of the newly grown urban patch [16,21]. We set 1 m as a buffer distance
according to the previous study [36]. The LEI value ranges between 0 and 100. When a
patch has an LEI value of 0, it belongs to the leapfrog mode; with an LEI value between 0 to
50, it belongs to the edge-expansion mode; otherwise, it belongs to the infilling mode when
the LEI is within 50 and 100 [16,36].
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The mean expansion index (MEI), reflecting the aggregate properties of the patch
mosaic, is the integration of the LEI of all the patches over the full extent of the data and is
calculated using Equation (3) [36]:

MEI =
N

∑
I=1

LEIi
N

(3)
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To describe the characteristic of morphological variation, the area-weighted mean
expansion index (AWMEI) was also computed using the following Equation (4) [16]:

AWMEI =
N

∑
I=1

LEI ×
( ai

A

)
(4)

where LEIi refers to the value of the LEI for a newly grown urban patch i, and ai is the
area of the patch. N is the count of the newly grown urban patches. A refers to the total
area of all the newly grown urban patches. A larger MEI or AWMEI value signals a more
substantial compacting trend in addition to the landscape expansion [16,36].

2.5. Quantifying the Impact of Urban Agglomeration Evolution on Landscape Pattern Changes

To further quantify the spatial and temporal changes in urban morphology and the
impact of urban agglomeration evolution on the city and regional landscape pattern, the
landscape metrics were calculated at the class and landscape levels for the whole PRDUA
using the Fragstats 4.2 software. Eight frequently used landscape metrics were selected and
calculated, including Edge Density (ED), Largest patch index (LPI), Area-weighted Mean
Patch Fractal Dimension (FRAC_AM), Area-weighted Mean Contiguity Index Distribution
(CONTIG_AM), Contagion index (CONTAG), Aggregation Index (AI), Patch density (PD),
and Landscape shape index (LSI). These landscape metrics can accurately capture and
quantify urban morphological variations in shape complexity, density, dominance, and
aggregation, and can be classified into three types, as shown in Table 1 [50,74]. We also
profiled the landscape metrics over time and fitted the change trend of each metric to detect
the landscape pattern dynamic along with the evolution of the PRDUA landscape.

Table 1. The selected Landscape metrics.

Metrics Type Metrics Name Description Level Unit

Density and dominance

Patch density (PD)

Describes the number of
patches scaled by the total

landscape or the class
area [52].

Class, Landscape No. per 100 ha

Largest patch index (LPI)
Percent of the landscape
occupied by the largest

patch [74].
Class, Landscape %

Shape complexity

Fractal index distribution
(FRAC_AM)

Describes the complexity of
landscape shape by the

relationships between patch
perimeter and area [52].

Class, Landscape None

Edge density (ED)

Describes the length of edges
between patches scaled to

the area of the
landscape [52].

Class, Landscape Meter per ha

Landscape shape index (LSI)
Describes the deviation of

patch structure from regular
shape (square) [52].

Class, Landscape None

Aggregation

Contagion index (CONTAG)
Describes the juxtaposition
and dispersion of landscape

elements [52].
Landscape %

Contiguity index
(CONTIG_AM)

Describes the spatial
connectedness, or

contiguity [75].
Class, Landscape none

Aggregation index (AI) Describes aggregation levels
of spatial patterns [76]. Class, Landscape %
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3. Results
3.1. Urban Growth and Spatial Expansion of the Urban Agglomeration in the PRDUA

The urbanized land in the PRDUA increased from 1819.8 km2 to 7092.2 km2 between
1985–2015, nearly quadrupling over the 30-year period. The top three cities with the highest
increase in urbanized land were Guangzhou, Foshan, and Dongguan, with areas of net
increase up to 1036.7 km2, 985.2 km2, and 958.1 km2, respectively. Meanwhile, the top
three cities with the fastest increase rates are Dongguan, Huizhou, and Zhongshan, whose
increase rates were 5.4, 5.3, and 4.8 times, respectively. The urbanized land area increased
linearly at the urban agglomeration scale (Figure 3a) and either linearly or non-linearly at
the city scale (Figure 3b).
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The spatial expansion of the urbanized land exhibited a continuous trend between
1985 and 2015, and the urban expansion was mainly concentrated in the central and
southeastern parts of the PRDUA, where Guangzhou, Foshan, Dongguan, and Shenzhen
are located (Figure 4). In the earlier period of the urbanization process, between 1985
and 2000, the urban growth was characterized by a rapid expansion, with a large number
of scattered newly urbanized patches and the emerging spatial framework of the urban
agglomeration. While in the later period of the urbanization process, between 2001 and
2015, the urban growth exhibited a pattern of spatial coalitions, which was characterized
by the edge-expansion and infilling modes from the old urban areas and newly grown
patches, eventually forming the current morphology of the urban agglomeration.
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Figure 4. Spatial patterns of urbanized land in the urban agglomeration in the Pearl River Delta
region in different time periods between 1985 and 2015.

The average annual growth rate of urbanized land (AGRUL) in the PRDUA was 4.6%
between 1985 and 2015. The AGRUL exhibited a bimodal change pattern, indicating that
the PRDUA experienced two rounds of urbanization processes. The first round started in
1985 and covered three periods. During the earlier period of 1985–1990, the AGRUL of the
whole PRDUA was 4.0%, and in 1990–1995, it quickly increased to the first peak of 10.4%,
which is also the maximum value throughout the whole study period. The value then
sharply declined to the minimum value of 2.5% in the period 1995–2000. The second round
exhibited a relatively slower growth rate and came to the second peak value of 5.0% during
2000–2005, and then slipped into a gentle decline in the last two periods of 2005–2010 and
2010–2015 (Figure 5).
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3.2. Spatiotemporal Evolution of the Urban Agglomeration in the PRDUA

The spatiotemporal evolutions of the PRDUA were well quantified by the spatial
and temporal distribution of three urban growth modes over time, respectively. During
the first round of urbanization, in the earlier period of 1985–1990, the spatial evolution
of the PRDUA was characterized by the co-occurrence of numerous newly grown small
urban patches in the leapfrog and edge-expansion growth modes (Figure 6a); the edge-
expansion and infilling modes dominated in the middle period of 1990–1995 (Figure 6b),
then switched to the dominance of the infilling mode in the later period of 1995–2000
(Figure 6c). In the second round of urbanization, the spatial expansion of the urban
agglomeration was characterized by the co-existence of the edge-expansion and infilling
modes between 2000–2005 (Figure 6d) and 2005–2010 (Figure 6e), respectively, while the
infilling mode showed overwhelming dominance between 2010–2015 (Figure 6f).
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The temporal trajectories of the urban agglomeration evolution in the PRDUA during
the past three decades can be explicitly depicted by the area proportion and the number
of newly increased urban patches in the growth modes of infilling, edge-expansion, and
leapfrog (Figure 7). Firstly, the three growth modes coexisted in all periods, but presented
a pattern of alternating relative dominance, which was indicated by their proportion of
area and patch number during the six time periods. Secondly, each urban growth mode
displayed a wave-like pattern over time, both in the proportions of patch area and the
patch number. Thirdly, in the early stage of each urbanization round, such as the periods of
1985–1990 and 2000–2005, the leapfrog and edge-expansion modes were relatively domi-
nant in terms of both area proportion and patch number. In the middle stages of 1990–1995
and 2005–2010, the edge-expansion and infilling modes were concurrently dominant. In
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the late stages of 1995–2000 and 2010–2015, the infilling mode was predominant, especially
in terms of the area proportion (Figure 7a).
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The evolution of the PRDUA was also reflected in the other two indices of landscape
expansion—the MEI and the AWMEI—both of which presented a wave-like pattern over
time. They both started from a small value in the early stage of urbanization and increased
gradually to a peak value, and then fell back to a small value and started a new round with
a similar increase pattern. This meant that the urban morphological structure presented
a dispersal form, indicated by small MEI and AWMEI values in the early urbanization
stage, and gradually came to a compact form, indicated by a large and peak value in
the late urbanization stage. This followed a process of diffusion and coalescence in the
first round of urbanization, and then came to the second round and followed a similar
diffusion-coalescence pattern (Figure 8).

3.3. Landscape Pattern Changes with the Evolution of the Urban Agglomeration in the PRDUA

The variations in the different landscape metrics effectively characterize the land-
scape pattern changes with urban agglomeration evolution over time in the PRDUA. The
class-level landscape metrics reflected the landscape pattern of the urban agglomeration
and presented three distinct characteristics. Firstly, the metrics that reflected the shape
complexity of the cities, such as the edge density (Figure 9a), the area-weighted mean
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fractal dimension (Figure 9c), the patch density (Figure 9e), and the landscape shape index
(Figure 9g), exhibited an M-shape change pattern, which nearly remained in sync with the
wave-like patterns of the urban growth rate (Figure 5), the growth mode (Figure 7), and the
landscape expansion indices, the MEI and AWMEI (Figure 8). Secondly, the largest patch
index (Figure 9b), the aggregation index of the contiguity (Figure 9d), and the aggregation
index (Figure 9f) present a stepwise increase over time. Thirdly, all the landscape metrics
generally displayed an increasing trend over time, with the exceptions of the patch density
and landscape shape index, which presented a decreasing trend over time.
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The spatiotemporal evolution of the urban agglomeration also influenced the regional
landscape pattern, which can be quantified by the changes in the landscape-level metrics
over time. Firstly, the shape complexity indices of the edge density (Figure 10a), area-
weighted mean fractal dimension (Figure 10c), landscape shape index (Figure 10g), along
with the dominance index of patch density (Figure 10e), all presented an M-shaped pattern
over time and remained synchronous with the wave-like pattern of urban growth, which
was very similar to that of the class-level metrics. Secondly, the temporal pattern of the
area-weighted mean contiguity index and the aggregation index showed a W-shaped
pattern (Figure 10f,h), while the largest patch index (Figure 10b) and contagion index
(Figure 10d) demonstrated a monotonic decline over time. Thirdly, the landscape became
more complex, while the landscape dominance and aggregation presented an opposite
trend, i.e., a declining trend over time.
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metrics changes over time, and the blue dash lines are fitting curves of linear regression equations.
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Figure 10. The temporal change patterns of landscape metrics at the landscape level in the PRDUA
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(LSI), (h) Aggregation Index (AI). The orange solid lines are trajectories of landscape metrics changes
over time, and the blue dash lines are fitting curves of linear regression equations.
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4. Discussion
4.1. Quantifying Spatiotemporal Evolution of Urban Agglomerations

An urban agglomeration is the outcome of urban growth and spatial aggregation in
cities within a region over time. The evolution of an urban agglomeration is normally
driven by multiple forces and follows a spatiotemporal pathway from a city cluster to
a megalopolis [2]. However, quantifying such a complex spatiotemporal process is a
challenge. Our study established a framework consisting of a series of metrics of growth
rate, growth modes, and landscape pattern metrics to quantify the evolution of the urban
agglomeration in the PRD region over a three-decade period.

Firstly, our temporal change detection, using the AGRUL and growth curve fitting
of the urbanized area, explicitly reveals the wave-like urban growth pattern and the
two urbanization processes of the PRDUA between 1985–2015 (Figure 5). This method
has been applied to detect the urban growth pattern changes in four major cities in the
central YRD region [16], as well as individual cities such as Shanghai, Nanjing, Hangzhou,
etc. [21,77]. Our method is a more straightforward way to demonstrate the wave-like
urban growth pattern than that of previous studies, which utilized landscape metrics along
the urbanization gradient to test the wave-like urban growth pattern [42,43]. Our results
showed diverse fitting patterns of the urbanized land in the PRD region; the entire urban
agglomeration exhibited a linear growth trajectory, while the nine major cities under the
PRDUA presented linear, exponential, logarithmic, and logistic growth trajectories over
time (Figure 4), which have never been reported for urban agglomerations in other regions.
Previous studies showed that three American metropolises outperformed three Chinese
urban agglomerations in terms of the degree of compact development or the quality of
urban expansion measured by population density [29]. Due to the following reasons,
the diverse growth trajectories revealed in this study imply that the Chinese government
should adopt different approaches to better manage land-use efficiency and improve the
urbanization quality at the regional scale. The AGRUL of the entire PRDUA reached 4.6%
in the past 30 years, which is nevertheless lower than that of 7.4% in the YRDUA between
2000–2015 [78].

Secondly, the spatial evolution of an urban agglomeration over time can be quantified
and the exact spatial extents can be explicitly delineated using growth modes and landscape
expansion indices. Based on the urban growth modes identified using the landscape
expansion index, we found that the leapfrog and edge-expansion modes dominated in
the early stage of urbanization, which facilitated fast urban expansion, while the infilling
mode dominated in the later stages and promoted the coalescence of urban patches. Each
mode presented its alternating relative dominance, measured using the proportion of patch
area and the patch number in different time periods during the urbanization processes in
the PRD region (Figure 6). Other studies that only used limited time period data could
not find such an urban growth change pattern of an urban agglomeration. For instance,
He et al. [29] and Zhou et al. [78] both identified that edge-expansion was the only primary
growth mode in the PRDUA and the YRDUA, respectively, because they only used two and
four time-period data, respectively. Yu and Zhou [79] revealed diverse patterns of growth
modes in three Chinese urban agglomerations, such as edge-expansion dominating the
urban growth in the BTHUA, edge-expansion and infilling dominating in the YRDUA, and
infilling dominating in the PRDUA when using the land-use data of 2000, 2005, and 2010.
Therefore, changing patterns of long-term urban growth modes can be helpful to explicitly
detect the spatial and temporal evolutions of an urban agglomeration over time.

4.2. Morphological Dynamics with Urbanization Processes of Urban Agglomeration

Urban morphology can display highly dynamic and dramatic changes in spatial pat-
terns during rapid urbanization processes. The spatial dynamic of urban morphology with
urbanization processes has been widely detected in many countries and regions at the city
scale using landscape metrics and/or urban expansion indices [16,21,30,38,42,49,55,70]. A
wave-like change pattern of the urban fringe, which was proposed firstly by Blumenfeld [39]
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and tested by Boyce [40] to demonstrate metropolitan expansion, has been observed. The
diffusion-coalescence theory has also been widely tested in individual cities to demonstrate
the urban morphological change processes [16,21,38,42]. For urban agglomerations, pre-
vious studies successfully detected the morphological changes of urban agglomerations
worldwide, but they only partially revealed the urban morphology, such as the landscape
pattern [26,78] and the diffusion-coalescence processes of urban growth [25,30]. The earlier
study on urban morphological change dynamics in the central YRD detected morphological
changes of the urban agglomeration through multiple perspectives, simultaneously, in the
landscape pattern, diffusion-coalescence processes, and dispersal-compact processes [16].
Our study revealed that the morphological change of the PRDUA exhibited a wave-like
expansion pattern, co-existing diffusion-coalescence processes of the urban form, and
an alternating switch between the compact urban form and dispersal urban form that
corresponded to the coalescence and diffusion processes, respectively, during the urban
form evolution of the past 30 years. Our study confirmed the spiral diffusion-coalescence
hypothesis proposed by Li et al. [16], which demonstrated that the three growth modes of
leapfrog, edge-expansion, and infilling alternated in relative dominance patterns in a spiral
manner during the urbanization processes. Similarly, a study conducted in three Swiss
urban agglomerations also supported the spiral diffusion-coalescence hypothesis [28].

Combining the LEI and AWMEI illustrates how the urban morphology changed
during rapid urbanization in the PRDUA. The temporal change of the MEI and the AWMEI
exhibited a wave-like pattern with two peaks, which implies that the PRDUA experienced
two rounds of alternating between dispersal and compact urban forms, which correspond
to the two rounds of diffusion and coalescence processes. The temporal variations of the
MEI and AWMEI (Figure 7) exhibited a synchronous match with that of the proportions
of the patch area and the patch number of infilling and edge-expansion urban patches
(Figure 8), but were inverse to that of leapfrog. The diffusion process corresponds to
the proliferation of the leapfrog in the early urbanization processes, which results in the
dispersal of the urban morphology. The coalescence corresponds to the edge-expansion
and infilling in the later urbanization processes, which make the urban form compact. This
pattern of diffusion and compaction was also shown in Xinjiang, where the edge-expansion
and infilling modes led to the compact growth of urbanized land [34].

4.3. Dual Reflectance of Landscape Metrics to Urban Form and Landscape Pattern Dynamics of
Urban Agglomeration

Landscape metrics have been widely used to characterize the urban form and its
changes during urbanization [49,53,80,81]. Most of the previous studies were from the
perspective of individual cities to identify the compactness or sprawl of the urban form
and classified the cities into different groups or types. For instance, Huang et al. [53]
used seven landscape metrics and successfully identified the 77 selected cities from Asia,
Europe, the USA, Latin America, and Australia as “sprawl” and “compact”, and classi-
fied these cities into different groups in terms of the spatial metrics. They also revealed
that the urban form of the cities in the developing world was more compact and denser
than their counterparts in Europe and North America. Similarly, Schwarz [49] utilized
landscape metrics to quantify the urban form of 231 European cities and classified them
into eight clusters. Another study used landscape metrics to identify the urban form of
194 cities of the world into four types, namely “compact-grey, transitional, ragged-small,
and fragmented-complex”, and they found that the urban forms of these cities tended to
be more homogeneous and most of them were in transitional states as a result of their
fragmentation and compactness [80]. However, these studies only used one or two time
series of land-use data to derive the landscape metrics and could not capture the temporal
trajectories of the urban form evolutions over time. Using the landscape metrics derived
from the long-term time series land-use data, our study demonstrated that, on one hand,
the urban form of the entire PRDUA generally exhibited an increasingly complex evolution
trend, reflected by the increasing edge density (Figure 9a), area-weighted mean fractal di-
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mension index (Figure 9b), and regularity indicating by landscape shape index (Figure 9g),
and the compact, demonstrated in the declining patch density (Figure 9e), increasing largest
patch index (Figure 9b), contiguity (Figure 9d), and aggregation index (Figure 9f). They are
similar to the increasing trends in the fragmentation, irregularity, and complexity of the
urban form of the YRDUA when measured using landscape metrics [16,78]. On the other
hand, the changing trajectory of each landscape metric showed a synchronous pattern
with the diffusion and coalescence that resulted in the compactness or dispersal of the
urban form of the entire urban agglomeration, which was also observed for the urban
agglomeration in the central YRD region [16].

The evolution of the PRDUA influenced the regional landscape pattern, which exhib-
ited a similar change trajectory to that of the urban form itself. Our results demonstrated
that the regional landscape of the PRD region also presented temporal change patterns as-
sociated with the spatial and temporal evolution of urban agglomerations. For instance, the
regional landscape patterns also exhibited wave-like trajectories (Figure 10a,c,e,g), which
corresponded to the temporal change patterns of the urban expansion (Figures 5 and 8)
and urban form (Figure 9a,c,e,g). On one hand, the shape complexity (Figure 10a,c) and
irregularity (Figure 10g) of the regional landscape increased over time, and that of the
connectivity of the regional landscape decreased (Figure 10f,h), while the fragmentation
increased (Figure 10b,d), which were similar to those observed in the YRDUA [16,78] and
those in the BTHUA [57].

4.4. Limitations

There are some limitations in our research that should be addressed in future stud-
ies. Firstly, the more detailed urban expansion or the temporal change of urbanized land
may not be fully captured using the five-year interval due to the high frequency of land
surface changes in the PRDUA, especially for Shenzhen and Guangzhou [82,83]. Short-
ening the inter-annual interval for the analysis could render a more detailed view of the
temporal features of urbanization, which is helpful in understanding the evolution of an
urban agglomeration.

Secondly, the details of the spatial changes in the landscape patterns may not be well
captured by the 30 m resolution urbanized land derived from the Landsat images. In
general, the grain size and extent have been determined by default when the study area
was determined; in particular, the data used were derived from remote sensing images.
The higher the spatial resolution, the more accurate and finer the scale information of
the landscape patterns presented [84,85]. Therefore, fine resolution is preferred when
computation efficiency is not a limitation. However, it is hard to acquire satellite data with
high resolution at periodical intervals [86], particularly at the regional scale. Therefore, a
reliable spatiotemporal data fusion method, such as STARFM or FSDAF [87,88], to improve
the spatial resolution and frequency of the images can be further explored.

Thirdly, the dataset we used allows the classification of urban, non-urban, and green
recovery, which could not fully describe the complex features of landscapes, such as
residential landscape and commercial landscape, and their dynamics. Thus, more detailed
classification schemes for time-series remote sensing data for the analysis of landscape
changes may provide more accurate characterization. Recently, increasing land-use and
land cover datasets at national and global scales have been made freely available and
accessible [89], providing us with the possibility to conduct more detailed urban expansion
monitoring in the future.

Lastly, most of the landscape expansion indices that were proposed in the previous
studies [33,34] only described the temporal change of urban expansion, but overlooked
the spatial changes of the evolution process of urbanization. For example, how the cities
and in-between areas spatially integrate into an agglomeration and how the interconnected
transportation develops [37] still require further studies. Thus, it is suggested to conduct
more spatial analysis, and even multiple spatial and temporal scales analyses, to provide
more valuable insights for understanding the evolution of an urban agglomeration.
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5. Conclusions

Based on the spatiotemporal trajectories of the urban agglomeration and its impacts
on the urban and regional landscape patterns in the Pearl River Delta region between
1985 and 2015, we found that the urbanized land area of the entire urban agglomeration
increased linearly, with an annual growth rate of 4.6%, while the nine major cities within
the PRDUA presented diverse growth trajectories, varying between linear and non-linear.
The PRDUA had experienced two cycles of urbanization processes, which were well
reflected by a bimodal wave-like pattern of the average annual growth rate of the PRDUA
over time. Three urban growth modes—infilling, edge-expansion, and leapfrog—existed
simultaneously, but only one mode dominated at a particular period, and the dominant
mode alternated during the urbanization processes, demonstrating that the spatiotemporal
evolution of the urban growth of the PRDUA follows the “spiral diffusion-coalescence
hypothesis”. The morphology of the PRDUA correspondingly showed an alternating
dispersal-compacting pattern over time. The city- and regional-level landscape patterns
changed synchronously with the spatiotemporal evolution of the PRDUA over time. The
response of the landscape patterns agreed well with the change in the growth rate and
growth modes. The urbanization of the PRDUA had increased the landscape complexity
at the city and regional scales, but also resulted in the increasing fragmentation and
decreasing connectivity of the natural landscape in the PRD region. These findings help to
better understand how an urban agglomeration evolves and provide insights for regional
urban planning and the sustainable development of urban agglomerations.
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